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Abstract

Repeated measures (RM) is a common data structure in many
�elds. They are a special form of multivariate data that makes mul-
tivariate graphics both practical and useful. A set of basic graphics
for RM data is introduced in the context of small to moderately sized
balanced data sets where a random e�ects model is under tentative
consideration. The graphics emphasize looking at as much of the data
as possible. Graphical considerations in constructing the plots are dis-
cussed. Graphics for checking the mean structure, variance structure
and relationship to covariates are mentioned. An approach to modeling
is introduced.

KeyWords: Covariance Selection; Hierarchical Models; Longitudinal Data;
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1 Introduction

Repeated measures (RM) data are multivariate observations where each case

Yi = (yi1; : : : ; yini
) consists of repeatedly measuring the same quantity such
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as IQ score or blood pressure over time on a single subject. Observations

yij are taken at times tij with ti = (ti1; : : : ; tini
)t. Graphics for general mul-

tivariate data are di�cult to construct and interpret because comparisons

between such as yi1 � yi2 between di�erent variables are not interpretable,

only di�erences yi1 � yj1 and relative di�erences (slopes) are interpretable.

For RM data even simple comparisons such as yi1 � yi2 and yi1 � yj1 are

both interesting and useful. The graphics should make these comparisons

as easy as possible.

RM data have a hierarchical structure, with time an essential component

of the data. Compared with regression data, this structure means that more

graphics and more complicated graphics are needed to understand the basic

structure of the data. Additionally, common RM models, such as random

e�ects (RE) models (Laird and Ware 1982) �t to RM data contain several

layers of assumptions, and these assumptions must be checked: each layer

requires its own graphics. The major features of RM data are the mean of

Yi over time, the covariance structure of Yi, and the relationship between

covariates and the mean and covariance. The ED graphics in this paper are

aimed at understanding these features of the data. In contrast, most graph-

ics are developed as inferential tools, not for data analysis. That is, most

graphics display the conclusions of an analysis, and are not geared towards

developing the conclusions. Generally, diagnostic plots may be designed to

display one particular piece of information well, or they can be omnibus ca-

pable of showing a range of problems with the data, but perhaps not quite

as clearly as a speci�cally targeted plot. In this paper, I concentrate on

omnibus graphics: these plots contain as much of the data as possible, and

they permit the discovery of unanticipated structure. The purpose of the

plots in this paper are to permit graphical analysis of repeated measures

data. The goal is to prevent major blunders in the analysis: no claim is

made for optimality. Rather the discussion is about what plots might use-

fully replace, surplant or extend the familiar scatterplot of linear regression

data.
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Limited work has been done on graphics for repeated measures data.

The parallel plot or pro�le plot is a standard tool for RM data (Weiss and

Lazaro 1992). For each case i, plot yij against tij , and connect the points

at times ti(j�1) and tij . Do not connect the dots between other times or

between cases. Examples are given in Figures 1, 3 and 4. Weiss and Lazaro

(1992) discuss the interpretation of these plots and examples of parallel

plots can be found in Crowder and Hand (1990), Gregoire, Schabenberger

and Barrett (1993), Izenman and Williams (1989), Draper (1986) and Lange

and Laird (1986) among many other places. Plots of random e�ects can be

found in Waternaux, Laird and Ware (1989); and in Lange, Little, and

Taylor (1990). Jones and Rice (1992) plot a small selection of pro�les and

Segal (1994) extends regression trees to repeated measures and plots pro�les

for sets of cases with similar pro�les in separate plots. Weighted Quantile-

Quantile (QQ) plots for checking the normality of the random e�ects are

analyzed in Dempster and Ryan (1986) and Lange and Ryan (1989).

The paper is organized into several sections. The next section discusses

the random e�ects model, estimates, residuals, modeling, and goodness of

�t. The examples used in the paper are introduced in section 3. Sections 4

though 6 discuss plots. Section 4 contains a discussion of how to draw paral-

lel plots when over-plotting is of concern, section 5 discusses plots involving

covariates; and section 6 discusses direct checking of the variance-covariance

speci�cation. The paper ends with discussion in section 7.

2 Repeated MeasuresModels, Estimation and Resid-

uals

2.1 Models

A class of models is needed to guide interpretation and construction of plots.

RE models are used as tentative candidate models particularly in develop-

ing residuals, but consideration cannot and should not be limited to those
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models. The basic repeated measures random e�ects model is

Yi = Xi�+ Zi�i + �i

�i � N(0; D); (1)

�i � N(0; �2I);

for i = 1; ::n; where Yi = (yi1; : : : ; yini
)t is the ni by 1 vector of repeated

measures on subject i taken at times ti = (ti1; : : : ; tini
)t; Xi, ni by p, and

Zi, ni by q are known vectors of covariates; � is a p by 1 parameter vector

of �xed e�ects, �i is a q by 1 parameter vector of random e�ects with prior

mean 0 and prior covariance matrix D, and �2 is the sampling variance from

trial to trial. Very commonly, Zi has columns which are polynomials in ti,

q < p, and Xi has a submatrix of q columns equal to Zi. The entire vector

Yi will be referred to as a subject, while an individual element yij will be

called an observation. The total number of observations is N =
P
ni, cases

are independent, and �i is independent of �i.

Integrating �i in (1) gives the marginal model

Yi � N(Xi�; Vi) (2)

where Vi = ZiDZ
t
i + �2I , and I is the appropriately sized identity matrix.

Other important models substitute di�erent matrices for Vi. The AR-1

model has Yi � N(Xi�; V
(AR)
i ), where the jkth element of V

(AR)
i , V

(AR)

ijk =

�2�jtij�tikj. Also worth considering is the independent increments model,

where V
(II)
ijj = �ij and V

(II)

ijk = V
(II)

ikj = �ij when j < k.

This paper takes an ecumenical approach to estimation. Examples of

Bayes, empirical Bayes and ad hoc estimation are used. Experience with

parallel plots suggests that the method of estimation is secondary to the

value of the plots.

Empirical Bayes estimation works frommodel (2). Estimates of (�; �2; D)

are produced by maximizing the likelihood resulting from (2), and estimates

of �i come from maximizing the resulting conditional likelihood in (1) given

estimates of (�; �2; D). Bayes estimation using Gibbs sampling (Gelfand,
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Racine-Poon, Hills and Smith 1990) gives posterior mean estimates of the

parameters (�; �i; �
2; D). Ad hoc approaches can be used, particularly in

early stages when the model is simple. An example used with the weight

loss data occurs when Xi = Zi = 1, the vector of ones of length ni. In this

case, � + �i can be estimated by the mean of the ni observations Yi. Also

possible is REML estimation (Laird and Ware 1982).

Any of these methods of estimation can be used to calculate the residuals

discussed in the next subsection. Let a hat over a parameter, for example,

�̂, D̂, �̂i and �̂
2 denote estimated parameters. Particular methods of calcu-

lation will be mentioned as part of the examples.

2.2 Residuals

At least three types of residuals have been de�ned in the literature (Weiss

and Lazaro 1992). The E-residuals follow from model (1) and are estimates

of �i

Ei = Yi �Xi�̂� Zi�̂i

are from Weiss and Lazaro (1992). The cross-sectional (Louis 1988) or R-

residuals are

Ri = Yi �Xi�̂:

and the random e�ect estimates �̂i are also called residuals by Waternaux,

Laird and Ware (1989). The Ri residuals are the sum of Ei and Zi�̂i.

All three residuals are useful. The Ei include variation due to missing

random e�ects and due to unmodeled �xed e�ects that are, crudely speaking,

orthogonal to Zi. They also contain information for checking on the constant

variance speci�cation �2, and on the presence of ��outliers, outliers due to
large �ij . The �̂i contain information on unmodeled �xed e�ects in the

span of the Zi, on the constant variance assumption D and on ��outliers,
outlying observations due to large �ik, where �ik is the k

th random e�ect for

case i. In particular, in the equicovariance model with Zi a column of ones,

the Ei will contain information about the e�ects of time trends and time
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varying covariates, and the �i will contain information about the e�ects of

baseline and other time �xed covariates.

2.3 Model development

The modeling plan is a variant on Box (1980), who describes data analysis as

a cycle of �tting and criticism. Here the idea is to plot the data; identify what

structure we can in the data; and �t the data using a model that incorporates

the structure we are aware of. The model structure may incorporate subject

matter knowledge and is extended through the graphics. We then plot the

data and residuals based on the current model. Additional structure is

identi�ed and incoporated into a new model; old structures are modi�ed as

needed. The picture is that of a spiral: with increasing cycles more and

more of the variability in the data are described. Likelihood ratio tests or

Bayes factors might be used to distinguish between models for which the

graphics are equivocal. The �nal inference is the model, rather than point

and interval estimates based on the model.

2.4 Goodness-of-Fit

Goodness-of-Fit is the comparison of two sets of information. A goodness-

of-�t test in a generalized linear model (glim, McCullagh and Nelder 1989),

depends upon the variance in binomial or Poisson regression being deter-

mined, once the linear predictors are known. The information about the

variance from the �tted model is compared to the variance information in

the residuals. In a QQ plot, a sample from one distribution is compared to

a theoretical distribution. In either case if the two sets of information dis-

agree, we have lack-of-�t. In graphics, goodness-of-�t requires two sources

of information and a method for comparing them. Clearly many possible

goodness-of-�t graphics are possible. One possibility is to have a precon-

ceived idea of the shape of a plot, i.e. residual plots in linear regression

should show no nonlinear trends. The second possibility is to overlay infor-

mation from two sources to permit easy comparison. One source might be
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from a data �t, the second source might be raw residuals.

3 Examples

3.1 Weight Loss Data

The weight loss data consist of up to eight weekly repeated measures of

weight on women enrolled in a weight loss trial. Patients were interviewed

the �rst week and enrolled in the study at the second week. Measures 1, 2,

3 and 6 were clinic visits. At weeks 4, 5, 7 and 8 measures were taken by

the women on their home scales at the request of an interviewer calling over

the phone. The design is unfortunate in that home weighing and weight loss

are confounded: this confounding will be ignored in the sequel, although it

would be kept in mind in further modeling. The data are plotted in Figure

1.

Figure 1 shows very little structure, except for the numerous parallel

lines. This indicates a random intercept should be included in the initial

model. Figure 2 shows a residual plot (Weiss and Lazaro 1992) of the data

from the simplest possible model where Xi = Zi = 1. Each subject's mean

is �i = �0 + �i, and is estimated in an ad hoc fashion by �Yi: = n�1
i

P
(yij).

Residuals are calculated as Ei = Yi � �Yi:1, where 1 is an appropriate sized

vector of ones. In stark contrast to Figure 1, the residual plot shows a

complicated story reecting the design of the study. From week 1 to week

2, no weight is lost, if anything, a little weight is gained. From week 2 to

week 3, the �rst week of weight loss, the patients lose quite a lot of weight.

At weeks 4 and 5 they continue to lose weight. At week 6, suddenly weight

is gained, presumably since patients are weighed under supervision with a

properly calibrated scale. At weeks 7 and 8, they continue to lose weight.

The overall weight loss indicates that a �xed time e�ect is needed in the

model.
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3.2 Pediatric Pain Data

The pediatric pain data consists of up to four observations on 61 children

aged eight to ten with up to four repeated measures on a measure of pain

tolerance. Pain tolerance is measured as the length of time in seconds that

the child can tolerate keeping his or her arm in cold water. Two measures

were taken during a �rst lab visit followed by two more measures during a

second visit after a two week gap. The children were classi�ed into one of

two groups, attenders (A) or distracters (D) during the �rst visit according

to their style of coping (CS) with the pain. During the second visit, a

treatment (TMT) was administered prior to the fourth trial. The treatment

consisted of counseling to either attend (A), distract (D) or no advice (N).

Interest lies in the main e�ects of TMT and CS and interactions between

TMT and CS. The data are plotted in Figure 3. This �gure will be discussed

in the next section.

The Xi matrix for each case is 8 � 4. The �rst column is a column of

ones; the second column is a column of ones or zeros, an indicator of CS; the

last six columns are all zeros, except for a single one in the last row in the

column that corresponds to the CS/TMT group (AA, AD, AN, DA, DD,

DN) the child belongs to.

3.3 Test Data

The test data consists of seven repeated test scores of 13 children at three

month intervals. The data are plotted in Figure 4. It appears that a �xed

intercept, and possibly a random slope is appropriate. The individual trends

for the last few time points are qualitatively di�erent from the shape at the

�rst several times. An analysis (not presented here) suggested that a �xed

intercept, random slope, and �xed quadratic were needed to �t the data.
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3.4 Catheterization Data

This data set consists of 4 repeated measures on heart rate (HR), systolic

blood pressure (SBP) and diastolic blood pressure (DBP) for each of 14

infants and children. Measures were taken the morning before a long heart

catheterization procedure, immediately after, the evening after, and the fol-

lowing morning. The idea is that the pro�les should show changes due to

the stress of the procedure followed by a return to baseline.

4 Parallel Plots

Basic interpretation of parallel plots is given by Weiss and Lazaro (1992).

Parallel at lines indicate need for a random intercept, parallel sloped lines

indicate the need for a �xed slope as well as a random intercept, and di�ering

slopes indicate the need for random slopes. Univariate outliers and bivariate

outliers of the form (yij ; yi(j+1)) can be detected easily.

Several problems occur with parallel plots. i.) They can quickly become

dense piles of ink, as in the bottom of Figure 3 and parts of Figure 2; ii.)

They can apparently show very little interesting structure, as in Figures 1

and 3; and iii.) They can also be sparse, as in the top of Figure 1 where we

are unable to see slopes of lines or sparse and waste space as in the upper left

and lower right of Figure 4. These problems, particularly the problem of line

density have earned parallel plots the appropriate appelation of spaghetti

plots.

Several solutions have been tried in the literature. One approach is to

summarize the data. For example, Figure 5 displays repeated box plots

showing the (min, lower quartile, median, upper quartile, and maximum) of

the residual weight data at each time. The box plots are as designed by Tufte

(1983, pp. 123-5). These plots lose the blocking information: the information

about which cases belong to the same individual. For example, we lose

the information that the three largest residuals at week 1 increase their

weight substantially at week 2. Researchers often plot the pro�les of means
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for several groups. This loses both inter- and intra- case variability. The

repeated box plot and pro�le of means can be considered inferential tools:

as such they are valid displays. In general, summary plots lose information,

but in exchange, concentrate our attention on the remaining information.

Another approach is to plot the data Yi or residuals Ei without the line

segments connecting (tij ; yij) and (ti(j+1); yi(j+1)). These plots are fatally

awed because they lose the information contained in the line segments

between observations within a case. The line-density plots of Miller and

Wegman (1991) also do not allow connections to be drawn between points

more than 1 time unit apart.

In a di�erent approach, many researchers plot individual pro�les on sepa-

rate plots, hopefully keeping the physical dimensions of each plot and scaling

of each axis the same and then look at the set of pro�les; this was reported

for example, in Gregoire, Schabenberger, and Barrett (1993), but the proce-

dure is much older than that paper; a recent example is in Cleveland (1993).

Gregoire, Schabenberger and Barrett (1993) note that this is a collection of

small multiples (Tufte 1983, Chapter 4). Figure 6 shows a sample of four

residual pro�les from the weight loss data. These plots maintain the con-

nections between points within a case, but lose the easy comparison across

cases that the overlaid parallel plots have. Similarly, the collection of slopes

at a time t cannot easily be compared to the slopes at time t0 in the plot.

Nor it is simple to compare two cases to see which has a larger slope at

a particular time. Of course, slopes are not visible in �gure 1 and barely

visible for a few cases in �gure 3.

The problems identi�ed in this section are i.) overplotting and sparseness

of lines, ii.) lack of connection between yij and yi(j+1), iii.) di�culty in

comparing yij and yi0j ; iv.) Lack of connection between yij and yi(j+2); and

v.) di�culty in viewing and comparing slopes.

Solutions given below to these problems are varied, and the choice of

solution for a particular problem will depend on the sample size of the data

set and available software. It is not intended that all of the solutions be
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used in any one problem. The solutions given in the sequel borrow graphical

ideas from other places and then these ideas are applied to the problems of

multivariate data display for repeated measures. Speci�c ideas used are the

shape parameter (Cleveland, McGill, and McGill 1985), the casement plot

(Chambers, Cleveland, Kleiner and Tukey 1983), background, and dynamic

graphics.

4.1 The information in a parallel plot

The �rst point is that while Figures 1 and 3 are awed, they do both contain

useful information and this information should be used in constructing an

initial model and in constructing further plots. Neither �gure 1 or 3 is

a likely candidate for publication in a paper analyzing these data; rather,

each is a useful �rst exploratory plot for understanding the structure of the

data. Figure 1 shows that each woman varies around an average weight; any

reasonable �rst model should include either a random intercept, a baseline

weight as a predictor or other similar structure. Figure 3 shows skewness

in the responses; also children with generally large responses have large

variability. This suggests a needed data transformation and further analyses

of these data take place on the log scale. The plot also shows that a few

extreme values were censored at t=240 seconds, a problem that will not be

dealt with further here but needs to be addressed as part of the modeling.

4.2 The shape parameter

Figure 1 is the default shape of the plot in many statistics packages. Slopes

are not visible. In contrast, we can see the slopes in Figure 2. Cleveland,

McGill and McGill (1985) suggest choosing the shape parameter of a plot to

make slopes of interest easily comparable in the plot. The shape parameter

is the ratio of the height H of the x-axis to the widthW of the y-axis. Slopes

of greatest interest here might either be the slopes

sij =
yi(j+1) � yij

ti(j+1) � tij
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or the slopes

si =
yini

� yi1

tni
� t1

:

The physical slopes PSij visible in the plot are

PSij =
H � (ymax � ymin)

�1

W � (tmax� tmin)�1
� sij

where H is the physical length of the y axis in centimeters (cm); W is the

physical length of the x axis in cm; H �(ymax�ymin)
�1 is a conversion factor

from data units to the physical page dimensions, say cm, for the horizontal

axis, andW �(tmax�tmin)
�1 is the conversion factor for the vertical axis, from

time to cm. Cleveland, McGill and McGill (1985) suggest setting the shape

parameter H=W optimally so that the physical slopes cluster around �1.
Figure 7 shows the weight data with an appropriate shape parameter chosen

to make the average physical slope be approximately 1. Figure 7 encodes

information about the relationship between baseline values and shape. In

contrast, Figure 2 trades baseline information for an expanded y axis and

the e�ect of n similar segmented lines drawn in close proximity.

The theory of shape parameters partially explains the usefulness of the

repeated measures residual plot. The slopes on optimized versions of �g-

ures 1 and 2 will be the same. Consequently, the ratio of optimal shape

parameters is the ratio of the ranges of the raw Yi data to the Ei residuals

up to error caused by the graphics program prettying up the axis labels.

Consider the range of balanced data Yi with ni � n0 under the null model

Yij = �0 + �i + �ij , Var(�i) = D and Var(�ij) = �2. A back-of-the-envelope

calculation suggests that the range of the raw data plot will be proportional

to
p
�2 +D, assuming D � �2 while the range of the residual plot will be

proportional to �, ignoring a constant (1 � n�1
0 )1=2. Therefore, the resid-

ual plot will be a factor of �=(�2 +D)1=2 closer to the optimal scale factor

than the raw data plot; a factor equal to the square root of one minus the

intraclass correlation coe�cient.
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4.3 Casement plots

Casement plots (Chambers, Cleveland, Kleiner, and Tukey 1983) provide

a useful way of reducing clutter on a single parallel plot by stratifying ob-

servations according to a covariate. Figure 8 shows a casement plot for the

pediatric pain data. The data have been log transformed, the model detailed

in section 3.1 �t, and E-residuals Yi�Xi�̂�Zi�̂i plotted in 6 subplots cor-

responding to each combination of the predictors. The parallel plot with

all residuals shows little structure, and the casement plot was produced to

see if the variation di�ered by CS or by TMT. The distracters have slightly

greater variability than attenders, and the DN group has an extreme outlier.

Casement plots are used by Crowder and Hand (1990, chapter 2) although

not by name. The physical size and units per physical length of the subplots

must be kept the same for all plots. This requires extra work on the part of

the graphics author since most graphics programs do not easily allow this

type of setup. Xlisp-stat (Tierney 1990) is a possible exception.

4.4 Plot Backgrounds

An extreme version of the casement plot are the plots of individual pro�les

as illustrated in Figure 6. The problem with the individual pro�les is that it

is di�cult to compare absolute levels or slopes across individuals. The iden-

ti�cation of sets of pro�les with similar shapes is more di�cult with pro�les

drawn on separate plots. This operation is called assembly by Cleveland

(1993). Cleveland (1993) suggests horizontal and vertical grid lines for data

of this sort, calling it a visual reference grid. Here I recommend an alter-

native visual reference system composed of a data based summary. Figure

9 shows the same selection of four pro�les from Figure 6 against the back-

ground of the summary box plots of Figure 5. Figure 9 shows that the choice

of four pro�les was not arbitrary, rather the pro�les corresponding to the

weights at week one which were the two highest, an approximately median

value, and the lowest value.
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Technically, background is a visual reference grid, however I prefer to

distinguish between a visual reference grid, which may have no statistical

content, and background, which has statistical content. Background is also

to be distinguished from the chart junk of Tufte (1983) which would actively

detract from interpreting statistical information in the plots.

The background in �gure 9 is based on data summaries. Alternative

sources for background could be summaries from a �tted model, in which

case the plot serves as a graphic for checking goodness-of-�t.

Any �gure where we have a strong opinion about the shape of the plot

given the model provides a graphical goodness-of-�t test. In cases where

the opinion would be based on the model �t or in situations where the

comparison is di�cult because our opinion is non speci�c, using background

is a good way to contrast the information directly with data or residuals.

For example, in Figure 2, if we expect no �xed or random slopes then the

pro�les should wander around the zero axis at both short and long times.

The plot as actually displayed tells us that our basic model does not �t.

4.5 Dynamic graphics

Dynamic graphics may assist in the viewing of many pro�les. First I discuss

a few plots which I have found useful, and to direct others towards more

fruitful lines of research, some plots which I have found less than useful.

A useful dynamic plot of residuals has been, starting with a blank can-

vas, to add residual pro�les to Figure 2 one at a time, with a 2-3 second

pause between additions. Too short of a pause confounds identi�cation of

the added pro�le, too long of a pause causes boredom. This dynamic plot

was the plot that �rst made me realize that Figure 2 indicates the need for

a random slope. The pro�les, as they are placed on the plot, have similar

shapes, but the shapes rock back and forth around a pivot that is roughly

located at the median time at week 4. Having discovered the random slope

structure in �gure 2, it becomes easy to construct a static plot that empha-

sizes the need for a random slope. Figure 10 shows a set of pro�les from

14



the weight loss data chosen speci�cally to show di�ering slopes amongst the

data.

Background is not necessarily needed for the dynamic display. However,

the display of the pro�les was most interesting for roughly the �fth through

the 25th to 30th cases, after which there were usually too many cases on the

screen to process. I suspect that the �rst few cases formed a background

against which later pro�les were compared. This suggests considering a

dynamic graph with a �xed number of pro�les, and, as pro�les are added,

some are removed, so that a constant amount of clutter remains on the

screen. In large data sets, it may not be necessary to view the entire data

set.

A number of variants are possible. One which has on one occasion been

useful, did use background. First the complete set of pro�les were drawn

on the plot in color. Then, one at a time, cycling through cases, each case's

pro�le is redrawn in a clashing color. When the next case is drawn, the

previous case is returned to the background color.

I have not found drawing single pro�les, erasing them, and then draw-

ing the next pro�le on the same plot to be useful. The removal of most

of the information in the plot followed by adding new information is very

distracting.

These plots along with many others were prototyped on the weight loss

residual data, and on another much larger study of weight loss over many

weeks. Further study of dynamic parallel plots is certainly possible, although

the ratio of value to e�ort is uncertain at best.

5 Plots Against Covariates

This section only begins the discussion of plots that show the relationship

between Yi and covariates Xik. Time pervades repeated measures data anal-

ysis, so when possible, pro�le plots have been taken as the basic plot. The

casement plot of �gure 8 plots the E�residuals against the entire set of
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covariate patterns for this data set. For time invariant covariates, Figure

11 shows a histogram of the posterior means of the random e�ects for the

logged data. The histogram is composed of individual bricks. Solid bricks

correspond to distracters, while the clear bricks which oat on top of the

solid ones are for attenders. Unwin (1992) illustrates an earlier histogram

of this form in another context. The main features of this histogram are

the large attender outlier, and, ignoring the outlier, the di�ering variance

in the two groups. There is also slight skewness in the data and a few gaps

suggesting possible non-normality.

Figures 8 and 11 show ways of plotting Yi or Ei against discrete valued

covariates. The time varying TMT assignment is not the most general type

of covariate, since while it is assigned at random across children, within

children it has a very speci�c design. I do not have a proposal yet for

showing the relationship between a randomly varying discrete covariate and

Yij .

Continuous predictors Wij are possibly more di�cult. The relationship

between a continuous predictor and a continuous response is often bound up

in the modeling of multivariate repeated measures, treating both Wij and

Yij as responses. Figures 12a and b show a line plot for the catheterization

data. Lines connect consecutive points (Wij ; Yij) to (Wi(j+1); Yi(j+1)) within

a case. Points between cases are not connected. The line plot can be thought

of as a generalization of the parallel plot in two ways. In the �rst, time tij

is replaced by a variable Wij which may not be monotone increasing in j,

as tij is assumed to be. Alternatively, consider a three dimensional parallel

plot, with points (tij ;Wij ; Yij) and points within a case connected in time

sequence. Then the line plot is the edge view of this plot, collapsing over

time. Figure 12a shows possibly increasing variance of DBP with increasing

HR. Figure 12b shows a bivariate outlier in fSBP, DBPg space that is not an
outlier on any single index. It shows the general correlation between these

two measures. Symbols may be added to the plot to indicate the beginning

(x) and ending (o) times. This tends to clutter the �gure, although in the
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case of fHR, DBPg, it adds information which was not easily noticed in

the parallel plot of DBP nor in the plot of fSBP, DBPg: with one major

exception, the DBP tends to be much higher at the last time point than at

the beginning.

Another set of plots for covariates are developed by Segal (1994) who

adapts regression tree (Breiman, Friedman, Olshen and Stone 1984) method-

ology for inference. He splits the predictor space into regions with similar

response pro�les, and then plots pro�le plots for each of the �nal nodes in

the tree.

6 Variance-Covariance speci�cation

The main plot for the inspection of the variance-covariance model is a scat-

terplot matrix of Yi, Ri, or Ei. The (k; k0) subplot of the scatterplot matrix

plots Rik against Rik0 , for example. This is clearly sensible for balanced

equally spaced data with possibly missing values. The scatterplot matrix

produced by most statistical software has a aw that must be remedied

for covariance structures of repeated measures data. The range of the kth

axis runs from min(Rik; k = 1::n0) to max(Rik; k = 1::n0), with possible

adjustments to make the tick marks be simple numbers. This means that

equal distances on di�erent subplots will normally not be an equal number

of data units, and comparisons across graphs become di�cult. The scaling

will roughly but unfortunately not exactly correspond to standardization by

the sample range of the Rik; k = 1::n0, and we will have a crude picture of

the correlation structure of the Yi's. Cleveland, Diaconis and McGill (1982)

report that the perceived correlation of a scatterplot also changes with the

scaling, so if the scales in di�erent subplots are quite di�erent, this could

a�ect interpretation.

There are several possibilities for the solution of these problems. One

is to make sure that each axis has the same data units per inch. If the

global minimum and maximum data values are used for all variables, there
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may also be information on changes in location across time as well as the

covariance, but since the parallel plot satisfactorily displays information

about changes in location and variance across time, the main reason for

inspecting the scatterplot matrix is to check the correlation. Recommended

is to use the same range on each axis, with varying minima. When the

variance is constant across time, then this plot de-facto gives a picture of the

correlation structure. When the variance is not constant, then the changing

variance may overwhelm the correlation information. Thus I recommend

plotting standardized data, using di�erent minima for each variable, and

constant ranges. Let sk be the sample standard deviation of the variable at

time k, and plot Yik=sk for example. Note that the de�nition of sk changes

as appropriate for Yi, Ei or Ri.

Figure 13 shows the E residuals for a simulated data set. The data

was generated with an AR-1 data structure with parameter � = :8, while

the E residuals were calculated based on a random intercept model. The

data were not standardized, since the variances appear constant. Checking

a particular model can be aided by the addition of background. The ellipses

are based on the sample means, variances, and correlations of the plotted

points, and plotted using a normal distribution based on those estimates

to produce a 50% sample region. The residuals would be expected to show

approximate uncorrelatedness if the true model were indeed a random in-

tercept model. The negative correlation between the lag 2 and 3 residuals

shows that subtracting the estimated random e�ects has over adjusted the

residuals so that they now have a strong negative correlation instead of a

zero correlation.

Figure 14 shows the E residuals for the test data, using standardization.

In �tting the model, the quadratic term has been omitted. The 1,2 cell

in particular shows a correlation between the �rst two time points that is

quite strong, indicating that the model is incorrect. The ellipses are 50%

prediction intervals for the E residuals based on the �tted model. The

ellipses clearly do not agree with the data, suggesting a lack of model �t.

18



The ellipses provide a partial check on normality also, but see Dempster and

Ryan (1985) and Lange and Ryan (1989) for Q-Q plots speci�cally designed

for checking normality. Figure 14 provides another example of goodness-of-

�t. The lack of overlap between the ellipses and the data indicate a lack

of �t of the current model, although unlike other plots discussed, Figure 14

does not readily lend itself to model elaboration.

7 Further Directions

I have only scratched the surface of dynamic plots for pro�le display and

much more study is clearly possible.

For covariates, I have not found color to be useful for encoding covariates.

There are three possible reasons for this. One is that the covariates did not

distinguish between di�erent cases and thus better examples are needed,

the second is that color itself does not work for distinguishing pro�les in the

examples I used, and the third is that the combination of system which I

used and the display types (ie choice of colors, line widths, monitor) were not

suitable for the discovery of information. Plotting methods for continuous

time varying covariates is a topic of current research.

The suggestion of nonconstant variance in the pediatric pain random

e�ects and also in the E residuals raises the question that perhaps cases

with large values of �i may also have a larger variance of the Ei. A plot

for detecting non-independence of the �i and �i is desirable. I have not

discussed the standardization of residuals prior to plotting. For the parallel

plots, for the purposes put to them here, this seems to be unnecessary. For

detection of nonconstant variance, this may be more useful. Standardization

of residuals is discussed in Rutter and Elasho� (1994).

The plots suggested here are intended for nearly balanced data with

small to moderate sizes, and should permit users to avoid terrible modeling

blunders. Re�nements of all the plots presented are certainly possible, and

plots for checking the relationship between covariates and the response need
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development. For data collected at random times, the scatterplot matrices

need modi�cation. One possibility is to have the (k; k0) subplot contain a

point from all observations with one observation in the window t0k < tij <

t0(k+1), and t0k0 < tij < t0(k0+1). The times t
0
k would be chosen to bracket the

range of times in the data, and could be chosen either to be equally spaced

or have equal numbers of points in each window. Occasional cases with 2

observations in one or both of these windows must be handled.

Many other plots are useful. For example, the correlogram and vari-

ogram (Diggle 1990 chapter 2; Diggle 1988) are also useful for checking the

covariance structure.
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Figure Captions

Figure 1. Parallel plot of the Weight Loss data.

Figure 2. Parallel plot of Weight Loss residuals.

Figure 3. Parallel plot of the Pediatric Pain data.

Figure 4. Parallel plot of the Test Score data.

Figure 5. Summary box plots of Weight Loss residuals.

Figure 6. A selection of four pro�les of Weight Loss residuals.

Figure 7. Weight Loss data with appropriate shape parameter.

Figure 8. Casement plot of Pediatric Pain Residuals. Attenders are in

subplots (a), (c), and (e), Distracters in (b), (d), and (f). The Attend treat-

ment was given to individuals plotted in (a) and (b); the distract treatment

to those in (c) and (d); and non-treatment to those in (e) and (f).

Figure 9. Weight loss residuals with summary box plot background.

Figure 10. Selection of weight loss residuals with background to show

random slope. The axis of the curves seems to be around week four.

Figure 11. Histogram of random e�ects with solid blocks for distracters

and clear blocks for attenders.

Figure 12. Line plots of a.) Heart rate and Diastolic Blood Pressure and

b.) Systolic Blood Pressure and Diastolic Blood Pressure for 13 babies.

Figure 13. Scatterplot matrix of E-residuals from simulated data. The

raw data has an AR-1 covariance structure but has been �t using a random

intercept model. The ellipses are based on a normal �t using the numbers

plotted in each plot.

Figure 14. Mice data: Scatterplot matrix of standardized E�residuals
from a model without quadratic e�ect with superimposed circles indicated

ostensible �tted 50% content regions.
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Figure 9
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Figure 10
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Figure 11
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Figure 12
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Figure 13
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Figure 14
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