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1 Bivariate Longitudinal Data

1. Often researchers are interested in how two or more longitudinal vari-

ables are interrelated. Are the overall levels correlated? Within a

subject, do individual ups and downs track each other?

2. The correlations between the two responses are called the cross corre-

lations. We may test whether the cross correlations are zero or not.

3. Occasionally we may consider including the second response as a time-

varying covariate in the fixed effects when analyzing the first longitu-

dinal response. We test the coefficient of the longitudinal covariate to

see if it is significantly different from zero. If the coefficient is positive,

the two variables go up together and down together; if the coefficient is

negative, the two variables move in opposite directions. This procedure

has a number of drawbacks.

4. Pain data: pain rating and log pain tolerance

(a) A second longitudinal variable called pain rating. Each subject is

asked to rate the pain of each trial on a 1 to 10 scale.

(b) We expect an inverse relationship between pain rating and pain

tolerance; the less the pain rating, the greater the pain tolerance

and vice versa.
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(c) This would show up as a negative coefficient in a model that in-

cluded pain rating as a predictor for log pain tolerance.

(d) We might suspect that a subject’s average pain rating has no

particular meaning, and that average pain rating is uncorrelated

with average pain tolerance.

(e) On the other hand, we might expect the variation up or down

in pain rating from the subject’s average rating might have some

relationship with pain tolerance.

(f) We need a model that allows us to distinguish between over all

subject average pain rating level and random variation from trial

to trial.

5. Kenya School Lunch Study examples

(a) A contrasting example might be when we measure subjects’ height

and weight repeatedly over time.

(b) Subject’s average height and weight are likely well correlated, but

the random variation in weight might not be particularly corre-

lated with random variation in height.

(c) Weight variation might have more to do with daily eating pat-

terns etc., while height variation depends more on slouching and

measurement error.
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(d) The observation to observation variation of one measure probably

does not have much to do with the other.

(e) Subject’s average nutrition level might predict the slope in an

anthropometric response such as height or weight.

2 Bivariate Longitudinal Example

Figure 1 illustrates four different models. Bivariate observations (Yij,Wij)

measured at time tij = j for j = 1, . . . , J = 4 times on each of 8 subjects. The

first response, Yij, is plotted on the horizontal axis and the second response,

Wij, is plotted on the vertical axis. Observations from the same subject

are plotted using the same symbol; the time sequence of the observations

is not indicated. The covariation between Yij and Wij has two parts. (1)

The covariation between subject means of Yi and Wi. Given the means, (2)

observations within a subject (Yij,Wij) may be correlated.

The language we are using corresponds to a random intercept model for

Yi and another random intercept model for Wi. Each variable, Y or W , has

a random subject intercept, and each observation Yij or Wij has a residual

error. Another way of saying that the subject means are correlated is to

say that the random intercept for Yi is correlated with the random intercept

of Wi. Similarly, when we say that the observations within a subject are

correlated, we mean that the residual errors at a given time j are correlated.
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Figure 1: Scatterplots of 4 hypothetical bivariate observations from 8 sub-
jects. Observations within a subject are plotted using the same plotting sym-
bol. Response Y is on the horizontal axis, response W is on the vertical axis.
(a) Figure illustrating bivariate longitudinal data with observations within
subject positively correlated, and subject averages also positively correlated.
(b) Positive correlation between subject averages, observations within sub-
ject uncorrelated. (c) Observations within subject correlated, subject aver-
ages uncorrelated. (d) Observations within subject uncorrelated and subject
averages uncorrelated.
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Model Parameter Est SE t p
1 rating -.055 .025 -2.3 .028
2 rating average -.070 .072 -.97 .34
3 rating deviation -.055 .027 -2.1 .043
4 rating deviation -.055 .027 -2.1 .045

rating average -.069 .072 -1.0 .34
deviation - average .013 .076 .18 .8

Table 1: REML estimates using the unstructured covariance model for four
models with pain rating as covariate. All models have 8 parameters for the
CS×TMT interaction effects. Estimates, standard errors and inferences are
given only for the pain rating variables. Model 1 has pain rating; model 2
has average pain rating only, model 3 has rating deviation only and model
4 includes both average rating and rating deviation in the model. The last
line presents the hypothesis test that the two coefficients are equal in this
last model; the estimate and standard error are for the difference in the two
coefficients. Models 2 through 4 use data only from the 58 subjects with
complete data.

3 Continuous Time Varying Covariates

Bad stats, but fittable using today’s software.

1. In the log pain tolerance analysis with coping style (CS) by treatment

(TMT) interaction, we include the pain rating as a covariate in the

analysis.

2. Subjects without complete pain rating and pain tolerance data will be

dropped from models that involve average pain rating and pain rating

deviations.

3. We hypothesize that average pain rating is not predictive of log pain

tolerance and if we entered it as a time fixed predictor we would not
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expect it to be significant.

4. Model 2 in table 1 gives the results of using average pain rating as a

predictor.

5.

rating deviationij = ratingij − average ratingi.

6. Even if average rating should not be predictive of log tolerance, rating

deviation should be. Model 3 in table 1 reports the result.

7. Finally, we can include both average rating and rating deviation in the

model, and this is reported as model 4 in table 1.

8. The test that both coefficients are equal is given in the last line of the

table and tests the null hypothesis that both effects are the same.

9. The results for rating in model 1 and rating deviation in models 3 and

4 are consistent. The higher the subject’s pain rating for that trial, the

shorter the time of immersion.

10. If you reverse the analysis, you don’t get the same results.
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4 Problems with Using a Response as a Pre-

dictor

1. Unbalanced data is awkward to handle, for calculating averages, or

deviations for example.

2. We can not use observations with one response or the other but not

both.

3. If there is a time trend, then the residuals will show a predictive rela-

tionship among the residuals which might be misinterpreted as corre-

lation in the residual variation, when it is actually the time trends of

the two variables that are correlated.

4. Which response should be treated as the response and which should be

treated as the covariate? Fitting four models as in table 1 with pain

rating as the response and with pain tolerance gives slightly different

results regarding the association. Log tolerance is significant, but log

tolerance deviation is borderline not significant; it comes in with p-

values between .05 and .06 for models 2 and 4. If we were compulsive

about using a .05 cutoff for significance we would conclude that there

was not a significant relationship between pain rating and log pain

tolerance deviations.

5. Whichever response is being used as a predictor may be affected by

the other covariates in the analysis. Could it be that treatment pre-
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dicts pain rating as well as log pain tolerance and that is why the two

variables appear related?

6. The solution

(a) It is preferable that one should model the two responses jointly.

(b) Research questions involving two or more continuous longitudinal

variables are often best answered in a multivariate longitudinal

framework.

(c) Treat the two variables as a bivariate response measured repeat-

edly over time.

(d) One advantage of multivariate models is that we can incorporate

subjects with different missing observation patterns on each re-

sponse.

5 The Bivariate Random Intercept Model

1. Yij is the first response measured at time tij for j = 1, . . . ni

2. Wij be the second response measured at the same times.

3. Each response is modeled by its own random intercept model.

4. The random effects and error terms will be correlated, inducing corre-

lation between the two responses.
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5. For covariates, we will assume the same K-vector xij of covariates at

time tij for both responses and the same matrix Xi, ni by K of covari-

ates with rows x′ij.

6. The Zi matrices will also be the same.

7. Two fixed effects vectors

αY = (αY 1, . . . , αY K)′

αW = (αW1, . . . , αWK)′

Two random intercepts βiY and βiW , each a scalar.

8. Two sets of residual errors

δiY = (δiY 1, . . . , δiY ni
)′

δiW = (δiW1, . . . , δiWni
)′

9. The model

Yij = x′ijαY + βiY + δiY j

Wij = x′ijαW + βiW + δiWj.
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11. DY Y the variance of the βiY and DWW the variance of the W random

intercepts βiW . The covariance DY W = DWY of the two random effects:

the average levels of the two effects are correlated. If they are not

correlated, then DY W will be zero. If the covariance DY W is positive,

the average levels of Yi and Wi go up and down together and if DY W

is negative, then when Yi is high, Wi on average will be low. If DY W

is positive, that indicates that either case (a) or (b) applies in figure 1,

while if DY W is zero, then case (c) or (d) applies.

12. Correlated residual errors δiY j and δiWj at the same time tij. Define

δij, now a 2-vector of residuals to be bivariate normal

δij =




δiY j

δiWj


 ∼ N2







0

0


 ,




σY Y σY W

σWY σWW







13. If σY W is positive, then the residual errors δiY j and δiWj are positively

correlated, as illustrated in figure 1(a) and (c). If σY W is zero, then

there is no within subject observation correlation as illustrated in figure

1(b) and (d). In the pain rating example, if σY W is negative, when log

pain tolerance is unusually high for a given subject, then we expect

pain rating to be unusually low for that subject.
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Parameter Est SE t p
DY Y 2.13 .51 4.2 <.0001
DY W -.27 .20 -1.3 .18
DWW .79 .16 5.0 <.0001
σY Y .34 .04 9.4 <.0001
σY W -.13 .07 -1.9 .065
σWW 2.39 .26 9.4 <.0001

Table 2: REML estimates for the covariance parameters for the bivariate
random intercept model fit to the Y =log pain tolerance and W =pain
rating data.

14. The bivariate random intercept model allows a decomposition of the

covariation of Y and W into two parts: the correlation among the

random intercepts which is a subject level correlation and the residual

error correlation which occurs at the observation level within a subject.

Pain Rating and Log Pain Tolerance Bivariate random intercept model.

Neither covariance parameter is significant when we include both covari-

ance parameters DY W and σY W in the model.

The estimated correlation between the random intercepts is

−.21 =
−.2740

(2.1317× .7936)1/2

and the estimated correlation between the residuals is

−.14 =
−.1279

(.3432× 2.3931)1/2
.
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M Non-zero −2 log
# parameters df REML AIC BIC χ2 test vs. 4
1 DY W , σY W 6 1568.8 1580.8 1593.8 χ2 = 6, df= 2,

p = .05
2 DY W 5 1572.3 1582.3 1593.1 χ2 = 2.4, df= 1,

p = .11
3 σY W 5 1570.7 1580.8 1591.5 χ2 = 4.1, df= 1,

p = .043
4 4 1574.8 1582.8 1591.4 –

Table 3: Model fitting summaries for the bivariate random intercept model
fit to the Y = log pain tolerance and W = pain rating data and three sub-
models. The first column is the model number, the second column gives the
non-zero covariance parameters, and column 3 is the number of covariance
parameters. Columns 4 – 6 are −2 log REML, AIC and BIC. The chi-square
test in column 7 compares the models to the null model with no correlation.

Sub-models of the Bivariate Random Intercept Model Bivariate

random intercept model illustrated in figure 1 and data from three sub-

models where one or the other or both of DY W and σY W are zero in (b), (c),

(d). All models include the CS and TMT main effects and interaction for

both responses.

Both models that include σY W are significantly better than model 4 with

no correlation at all. In the full model neither parameter was quite significant,

but the hypothesis test that both parameters are zero is rejected with a p-

value of .05!

If we prefer a more parsimonious model, the full model 1 is not signif-

icantly better than model 3 with DY W = 0 and model 3 is the model we

originally hypothesized a priori as being most plausible.
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Parameter Est SE t
DY Y 1.50 .11 14
DY W 1.16 .12 9
DWW 2.46 .23 11
σY Y 1.27 .04 32
σY W .34 .06 6
σWW 5.84 .18 32

Table 4: REML estimates for the covariance parameters for the bivariate ran-
dom intercept model fit to the Cognitive Y =arithmetic and W = Raven’s
responses. P -values are all significant and less than .0001 and are not re-
ported.

Cognitive Data Jointly analyze Arithmetic and Raven’s. Predictors are

gender, age at baseline, time in years and the time by treatment interaction.

We start with the full bivariate random intercept model. Both covariance

parameters DY W and σY W are highly significant.

6 Bivariate Random Intercept and Slope

Four random effects for each subject, a random intercept and slope for

Raven’s and a random intercept and slope for arithmetic. The full model

allows for all random effects to be correlated, giving a 4 by 4 covariance

matrix D.

Residual errors for arithmetic and Raven’s are allowed to be correlated

when they are observed at the same tij.
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Parm Name Est SE t p
D11 AI AI 1.57 .13 12
D21 RI AI 1.15 .14 8
D22 RI RI 2.29 .28 8
D31 AS AI -.087 .055 -1.6 .11
D32 AS RI -.078 .076 -1.0 .30
D33 AS AS .15 .04 3.5 .0003
D41 RS AI .05 .11 .4 .68
D42 RS RI -.04 .18 -.2 .84
D43 RS AS .11 .07 1.7 .10
D44 RS RS .77 .20 3.8
σAA 1.18 .04 28
σAR .27 .06 4
σRR 5.36 .19 28

Table 5: REML estimates for the covariance parameters for the bivariate
random intercept and slope model fit to the Y =arithmetic and W =Raven’s.
Subscripts on D indicate 1 is the arithmetic random intercept (abbreviated
AI), 2 is the Raven’s intercept (RI), 3 is the arithmetic random slope (AR),
and 4 is the Raven’s random slope (RS). The σ parameters are the residual
variances and covariances. Name gives the abbreviated name of the variance
or correlation. P -values less than .0001 are not listed.

The full model is

Yij = x′ijαY + βiY 1 + βiY 2tij + δiY j

Wij = x′ijαW + βiW1 + βiW2tij + δiWj. (1)

βi = (βiY 1, βiW1, βiY 2, βiW2)
′ be the 4-vector of random effects.

βi ∼ N4(0, D).

Cognitive Data Cognitive arithmetic and Raven’s data.
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A model that omits the covariances between the intercepts and slopes has

a −2 log REML likelihood of 21374.5 and 4 fewer parameters than the full

model. The chi-square statistic is 3.6 which is not significant on 4 degrees of

freedom. In this reduced model, the covariance between the random slopes is

still not quite significant with a p-value of .06; the other covariances are very

significant. In this reduced model, the estimated correlation between the

residual errors is still .11; the estimated correlation between the intercepts is

.62 and the estimated correlation between the slopes is .36. We usually do

not like to fit a model where the intercept and slope for the same response are

uncorrelated but this reduced model allows a hypothesis test of no correlation

between intercepts and slopes and can be fit using current software.

7 Non Simultaneously Measured Observations

Sometimes we have multiple longitudinal sequences measured on the same

subjects, but not recorded at the same time.

We can still ask whether random intercepts and/or random slopes are

correlated.

We expect nutrition is correlated with anthropometric measures such as

weight or height or cognitive measures such as Raven’s.

This hypothesis can be tested in a random effects framework where the

nutritional variable has a random intercept and weight or Raven’s has a

random intercept and slope.
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Parm Est SE t p
DWW 8.09 .51 16
DWI .085 .043 1.9 .054
DII .092 .008 12
ΣWW .57 .006 97
ΣWI – – –
ΣII .73 .096 8

Table 6: Bivariate longitudinal analysis of available iron and weight fit using
REML estimation. The model has correlated random intercepts and no cor-
relation among residuals. Observations were taken at different times for the
two responses.

Anthropometry and Nutrition The nutrition, cognitive and anthro-

pometry measures are measured at different times.

Available iron and weight, and fit the bivariate random intercept model

without correlation between the residual errors.

8 Unstructured Covariance Models for Bivari-

ate Responses

1. Unstructured Covariance Model

2. Independent Model, Each separately with Unstructured Covariance

3. Product Correlation

We have J(2J + 1) variance parameters.
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Pain Rating Log Pain Tolerance
1 2 3 4 1 2 3 4

1 4.73 3.02 2.20 1.40 -.62 -.34 -.78 -.44
Pain 2 .64 4.75 2.08 1.49 -.31 -.31 -.48 -.38
Rating 3 .48 .45 4.49 2.27 -.21 .22 -.41 -.04

4 .32 .34 .54 4.00 -.12 .02 -.23 -.21
Log 1 -.29 -.14 -.10 -.06 1.00 .75 .95 .58
Pain 2 -.15 -.13 .10 .01 .70 1.14 .88 .76
Tolerance 3 -.31 -.19 -.17 -.10 .82 .71 1.35 .90

4 -.19 -.17 -.02 -.10 .55 .68 .74 1.11

Table 7: Estimated covariance matrix (upper half) and correlation matrix
(lower half) for the pain data using the unstructured covariance model for
bivariate longitudinal data. The long diagonal (in bold) gives the estimated
variances for pain rating at each trial and then for log pain tolerance. The
upper left and lower right quadrants give the covariance/correlation matrix
of the pain ratings and log pain tolerances respectively. The bold face corre-
lations in the lower left quadrant identify the correlations between simulta-
neously assessed pain rating and log pain tolerance.

-2 log
# model df REML AIC BIC chi-square
1 Bivar RI 6 1568.8 1580.8 1593.8 χ2 = 44.4, df= 30, p = .044
2 Ind RI 4 1574.8 1582.8 1591.4 χ2 = 50.4, df= 32, p = .02
3 PCRI 4 1576.4 1584.4 1593.0 χ2 = 52.0, df= 32, p = .014
4 FA1 15 1617.2 1647.2 1679.6 χ2 = 92.8, df= 21, p = .000
5 FA2 23 1551.3 1597.3 1647.0 χ2 = 26.9, df= 13, p = .013
4 PCUN 12 1553.4 1577.4 1603.3 χ2 = 29.0, df= 24, p = .22
5 INDUN 20 1540.5 1580.5 1623.7 χ2 = 16.1, df= 16, p = .45
6 UN 36 1524.4 1596.4 1674.2 –

Table 8: REML log likelihood, AIC and BIC for several models fit to the
bivariate pain data. The chi-square test compares each model to the unstruc-
tured covariance model. Model 1 is the bivariate random intercept model,
model 2 is the independent random intercepts model and model 3 is the
product correlation random intercept model. Model 4 is the product correla-
tion unstructured model (PCUN), 5 is the independent unstructured model
(INDUN) and 6 is the unstructured model.
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8.1 Unstructured Within Response, Independent Re-

sponses

Test independence by comparing UN to the model where there is a separate

unstructured covariance model for each response and no correlation between

responses. This bivariate independent unstructured (INDUN) model has

J(J + 1) covariance parameters.

8.2 Product Correlation Models

The product correlation unstructured (PCUN) model allows for the same cor-

relation structure for each response and essentially the same variance struc-

ture for the two responses.

ΣY be the covariance matrix of the first response.

ΣW be the covariance matrix of the second response.

ΣW = v1ΣY

where v1 is an unknown scale parameter to be estimated. The correlation

between Wij and Wil is equal to the correlation between Yij and Yil

Corr(Wij,Wil) = Corr(Yij, Yil).
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The ratio of two variances at different times is also the same

Var(Wij)

Var(Wil)
=

Var(Yij)

Var(Yil)
.

The variances Var(Wij) and Var(Yij) are different, because of the v1 parame-

ter.

The cross-covariance between observations Yij and Wil taken at different

times tij and til is

Cov(Yij,Wil) = v2Σjl

where v2 is a further unknown parameter to be estimated. Since Σjl = Σlj,

Cov(Yij,Wil) = Cov(Yil, Wij),

where the j and l subscripts are switched on the right hand side compared

to the left hand side of the equation. Similarly, it is not too hard to show

that the cross correlations follow the same property

Corr(Yij,Wil) = Corr(Yil,Wij) =
v2

v
1/2
1

Σjl

(ΣjjΣll)1/2
. (2)

The cross correlation between Yij and Wil is the same as between Yil and

Wij. Unlike what we can potentially see with the unstructured covariance,

there can not be a temporal lead dog. In the product correlation model we

can not have the situation where Yi1 is highly correlated with (hence highly
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Pain Rating Log Pain Tolerance
1 5.25 3.68 3.83 2.32 -.34 -.24 -.25 -.15

Pain 2 .67 5.70 3.65 2.96 -.24 -.36 -.23 -.19
Rating 3 .67 .61 6.22 3.78 -.25 -.23 -.40 -.24

4 .44 .54 .66 5.27 -.15 -.19 -.24 -.34
Log 5 -.16 -.10 -.10 -.07 .89 .62 .65 .39
Pain 6 -.10 -.16 -.10 -.08 .67 .96 .62 .50
Tolerance 7 -.10 -.10 -.16 -.10 .67 .61 1.05 .64

8 -.07 -.08 -.10 -.16 .44 .54 .66 .89

Table 9: REML fit values from the product correlation unstructured (PCUN)
model. Correlations are below, variances are on, and covariances are above
the long diagonal. The covariance/correlation matrix for pain rating and
separately for log pain tolerance are in bold.

predictive of) Wi2, but that Wi1 does not predict Yi2. This is possible with

the unstructured covariance matrix.

When j = l, (2) simplifies to

Corr(Yij, Wij) =
v2Σjj

(v1ΣjjΣjj)1/2
=

v2

v
1/2
1

. (3)

In the product correlation model, the two observations at the same time Yij

and Wij have the highest correlation in absolute value among all pairs Yij

and Wil. This can be seen by comparing the last two equations and realizing

that the second term in equation (2) is a correlation and so is less than one in

absolute value, and this term is missing in the contemporaneous correlation

(3).

There are J(J + 1)/2 parameters in ΣY plus 2 additional parameters

v1 and v2 respectively the variance factor v1 for W over Y and the cross-

20



covariance factor v2. The unstructured covariance model has J(2J + 1) pa-

rameters. We can test the PCUN versus the UN model with a chi-square

statistic with J(2J + 1) − (J(J + 1)/2 + 2) = 1.5J2 + J/2 − 2 degrees of

freedom.

Another product correlation model is the product correlation random

intercept (PCRI) model. The covariance matrix ΣY is now a RI covariance

model with two parameters, and ΣW = v1ΣY , and the J by J covariance

matrix Cov(Yi,Wi) = v2ΣY for a total of 4 parameters. The correlations

within Yi or within Wi are assumed the same, but the variances are different

between Yi and Wi. The correlation between Yij and Wij at the same time

is larger than the correlation between Yij and Wil at different time points.

8.3 Data Structure

1. Data structure for the pain data, a single data set in long form with 8

observations for each subject.

2. A single variable ‘response’ which is the pain rating for the first four

observations and is the log pain tolerance for the second four observa-

tions.

3. A separate variable ‘type’ tells which type of response each observation

is. For the pain data this was “r” or “t” for rating or tolerance.
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