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Using SAS PROC MIXED to Fit Multilevel Models, 
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SAS PROC MIXED is a flexible program suitable for fitting multilevel models, 
hierarchical linear models, and individual growth models. Its position as an 
integrated program within the SAS statistical package makes it an ideal choice 
for empirical researchers and applied statisticians seeking to do data reduc- 
tion, management, and analysis within a single statistical package. Because the 
program was developed from the perspective of a "mixed" statistical model 
with both random and fixed effects, its syntax and programming logic may 
appear unfamiliar to users in education and the social and behavioral sciences 
who tend to express these models as multilevel or hierarchical models. The 
purpose of this paper is to help users familiar with fitting multilevel models 
using other statistical packages (e.g., HLM, MLwiN, MIXREG) add SAS PROC 
MIXED to their array of analytic options. The paper is written as a step-by-step 
tutorial that shows how to fit the two most common multilevel models: 
(a) school effects models, designed for data on individuals nested within natu- 
rally occurring hierarchies (e.g., students within classes); and (b) individual 
growth models, designed for exploring longitudinal data (on individuals) over 
time. The conclusion discusses how these ideas can be extended straighfor- 
wardly to the case of three level models. An appendix presents general strate- 
gies for working with multilevel data in SAS and for creating data sets at 
several levels. 

As multilevel models, hierarchical models and individual growth models 
increase in popularity, the need for credible and flexible software that can be 
used to fit them to data increases. In their 1994 review of the five major software 
programs that were then currently available, Kreft, de Leeuw and van der 
Leeden (1994) found that only one (BMDP-5V) was integrated into a multipur- 
pose statistical package. The remaining four required users to conduct prelimi- 
nary data reduction and data processing in a different package before outputting 
data files to the specialized packages for analysis. Although the last few years 
have seen improvements in the front-ends of the two most popular packages- 

Thanks are due to Russ Wolfinger of SAS Institute who read and commented upon a 
previous version of this paper and to three anonymous reviewers. 
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HLM (Bryk, Raudenbush, & Congdon, 1996) and MLwiN (Prosser, Rasbash, & 
Goldstein, 1996)-many users have sought the inclusion of routines for fitting 
multilevel models into the major statistical packages themselves. 

In 1992, SAS Institute introduced one such routine-PROC MIXED-into 
their large menu of offerings. In subsequent releases, SAS has updated and 
expanded the models and options available as part of PROC MIXED to the point 
that it is now a reasonable choice for researchers fitting many types of multilevel 
models. Although the documentation for PROC MIXED is complex (SAS 
Institute, 1992, 1996), and the defaults are often not appropriate for many 
models (Latour, Latour, & Wolfinger, 1994; Littell, Milliken, Stroup, & Wolfin- 

ger, 1996), the abilty to do data reduction, management, and analysis in a single 
software package makes this routine particularly attractive to a wide range of 
researchers. 

Because PROC MIXED was developed from a distinctly different perspective 
than that employed by most statisticians and empirical researchers in the educa- 
tional, social, and behavioral sciences, its syntax and programming logic may 
appear unusual to people in these fields (Ferron, 1997). Unlike HLM and 
MLwiN, which were written with the kinds of models used by social scientists 
in mind, PROC MIXED was written by agricultural and physical scientists 
seeking a generalization of the standard linear model that allows for both fixed 
and random effects (McLean, Sanders, & Stroup, 1991). Although it is not 
immediately obvious based upon the documentation provided by SAS, it is 
indeed the case that by properly specifying the mixed model, a data analyst may 
fit a variety of specific instances of the multilevel models, hierarchical models, 
and individual growth models that have become so popular in educational and 
behavioral research (Kreft, 1995; Hox & Kreft, 1994). 

The purpose of this paper is to show educational and behavioral statisticians 
and researchers how they can use PROC MIXED to fit many common types of 
multilevel models. Rather than try to cover a broad array of models (without 
providing sufficient depth for the reader to understand the logic behind the 
syntax), I focus on two of the most common models: (a) school effects models, 
designed for data on individuals nested within naturally occurring hierarchies 
(e.g., students within classes, children within families, teachers within schools); 
and (b) individual growth models, designed for exploring longitudinal data (on 
individuals) over time. In addition, because the use of PROC MIXED does not 
obviate the need for substantial data processing in preparation for analysis, in the 
appendix I present general strategies for working with multilevel data in SAS 
and for creating data sets at several levels. 

Multilevel models can be expressed in at least three different ways: (a) by 
writing separate equations at multiple levels; (b) by writing separate equations 
at multiple levels and then substituting in to arrive at a single equation; and 
(c) by writing a single equation that specifies the multiple sources of variation. 
Bryk and Raudenbush (1992) specify the model for each level separately, and 
their software program (HLM) never requires you to substitute back to derive a 
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single equation specification. Goldstein (1995) expresses the multilevel model 
directly using a single equation, and his software program, MLwiN, works from 
that single level representation. PROC MIXED also requires that you provide a 
single level representation. For pedagogic reasons, in this paper I take the 
middle ground, initially writing the model at multiple levels (kept here to two) 
and then substituting in to arrive at a single equation representation. 

To use this paper effectively, a basic understanding of the ideas behind 
multilevel modeling, hierarchical modeling, and individual growth modeling is 
helpful. Both Bryk and Raudenbush (1992) and Hox (1995) provide excellent 
introductions to these topics. In particular, the reader must understand: (a) the 
difference between a fixed effect and a random effect; (b) the notion of multiple 
levels within a hierarchy; (c) the notion that the error variance-covariance 
matrix can take on different structures; and (d) that centering can be a helpful 
way of parameterizing models so that the results are more easily interpreted. 

This article does not substitute for the comprehensive documentation avail- 
able through SAS, including the general PROC MIXED documentation (SAS 
Institute, 1992, 1996), Getting Started with PROC MIXED (Latour, Latour, & 
Wolfinger, 1994), and The SAS System for Mixed Models (Littell et al., 1996). 
My goal is simply to provide a bridge to users already familiar with multilevel 
modeling because the SAS documentation is thin in this regard. I have found 
that PROC MIXED's flexibility has led many an unsuspecting user to write a 
program, obtain results, and have no idea what model has been fit. The goal for 
the user, then, is to specify the model and to learn the syntax necessary for 
ensuring that this is the model being fit to the data. 

Two-Level School Effects Models 

I begin by presenting an overview of strategies for using PROC MIXED to fit 
classic two-level school effects models. By two-level school effects models, I am 
referring to situations in which you have data at two levels within an organiza- 
tional hierarchy-such as students within classes or classes within schools-and 
you would like to examine the behavior of a level-i outcome as a function of 
both level-i and level-2 predictors. 

To achieve some continuity with presentations of these models available 
elsewhere, I use the High School and Beyond data example that Bryk and 
Raudenbush (1992) include in the 1996 version of HLM for Windows (Bryk et 
al., 1996). Readers unfamiliar with this example should consult Chapter Five of 
Bryk and Raudenbush (1992) for a fuller description. The data set consists of 
information for 7,185 students in 160 schools (with anywhere from 14 to 67 
students per school). The student-level (level-I) outcome is MATHACH. The 
student level (level-1) covariate is SES. There are two school-level (level-2) 
covariates. One is an aggregate of student level characteristics (MEANSES); the 
other is a school-level variable (SECTOR). MEANSES and SES are centered at 
the grand mean (they have means of 0). SECTOR, a dummy variable, is coded 0 
and 1. 
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I begin by fitting an unconditional means model, examining variation in 
MATHACH across schools. I then sequentially examine the effects of a school- 
level (level-2) predictor (MEANSES) and a student level (level-1) predictor 
(student SES). Having examined each type of predictor separately, I conclude 
this section of the paper by combining both types of predictors into a single 
model. Wherever possible, I use the notation used by Bryk and Raudenbush 
(1992). Readers more familiar with Goldstein's (1995) notation will need to 
make periodic translations. 

Unconditional Means Model 

The unconditional means model can be viewed as a one-way random effects 
ANOVA model. Although there are several different ways to write this model, 
one common approach expresses the outcome, Y,, as a linear combination of a 
grand mean p, a series of deviations from that grand mean (the aj) and a random 
error associated with the ith student in the jth school (r/j): 

Yij= p + oj + rj where 

oa • iid N(0,Too) and rij- iid N(0,&2) 
(1) 

This model has one fixed effect (p) and two variance components--one repre- 
senting the variation between school means (Too) and the other representing the 
variation among students within schools (&2). You can fit this model in PROC 
MIXED quite easily using the following syntax: 

proc mixed; 
class school; 
model mathach 
random school; 

Rather than parameterize the model this way, however, consider an alternative 
approach-a two-level approach-that generalizes more easily to more complex 
models. This strategy expresses the student-level outcome Yij using a pair of 
linked models: one at the student level (level-1) and another at the school-level 
(level-2). At level 1, we express a student's outcome as the sum of an intercept 
for the student's school (POj) and a random error (rij) associated with the ith 
student in the jth school: 

Yj = 30oj + rij where rij r N(0,u"2) (2a) 

At level 2 (the school level), we express the school level intercepts as the sum of 
an overall mean (yoo) and a series of random deviations from that mean (uj: 

Oj = 70o + Uoj, where UOj - N(0,oTo) (2b) 

Substituting (2b) into (2a) yields the multilevel model: 
Y, = yoo + uoj + r where 

uoj N(O,Too) and r, • N(0,02) 
(3) 
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Notice the direct equivalence between the model in (1) and the model in (3). 
The grand mean p is now represented by yoo, the effect of school (the ca) is now 
represented by u0o, and the residual associated with the ith student in the jth 
school remains rij. This model can be partitioned into two parts: a fixed part, 
which contains the single effect oo (for the overall intercept) and a random part, 
which contains two random effects (for the intercept u0o and for the within- 
school residual rij). We fit this model to data to estimate both the fixed effect yoo 
(which tells us about the average MATHACH score in the population) and the 
two random effects, Too (which tells us about the variability in school means) 
and o2 (which tells us about the variability in MATHACH within schools). 

Although it may not be immediately obvious, the model in (3) postulates that 
the variance and covariance components take on a particular form. First, because 
we have not indicated otherwise, we are assuming that the rij and the uo are 
independent. Second, if we combine the variance components for the two 
random effects together into a single matrix, we would find a highly structured 
block diagonal matrix. For example, if there were three students in each class, 
we would have: 

Too+r2 o000 0 0 0 
Too o00+2 o00 000 0 0 0 

Too Too Too+U2 000 0 0 0 
0 0 0 ... 0 0 0 

0 0 0 . .. 0 0 0 (4) 
0 0 0 ... 0 0 0 
0 0 0 000 

0Too+O2 7oo Too 
0 0 0 0 000 Too oo+2 oo 
0 0 0 000 Too Too Too00 00 00 

2 

If the number of students per class varied, the size of each of these submatrices 
would also vary, although they would still have this common structure. The 
variance in MATHACH for any given student is assumed to be oo + o2. This 
structure is known as compound symmetry. The covariance of MATHACH 
scores for any two students in a single class is Too. The covariance of MATH- 
ACH scores for any two students in different classes is 0. 

The representation of the multilevel model in (3) leads to an alternative 
specification of the unconditional means model in PROC MIXED. The syntax is: 

proc mixed noclprint covtest: 
class school; 
model mathach = /solution; 
random intercept/sub=school; 
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After invoking the procedure and identifying any categorical variables (using the 
CLASS statement), the MODEL statement specifies the fixed effects and the 
RANDOM statement specifies the random effects. Let's examine this syntax in 
detail by focusing on its two major parts: the structural part (the first two lines) 
and the modeling part (the second two lines). 

Structural specification. The NOCLPRINT option on the PROC MIXED 
statement prevents the printing of the CLASS level information giving the 
numbers of schools involved in the analysis. The first time you run the program, 
you might not want to include this option to ensure that all relevant groups are 
included in the analysis. The COVTEST option on the PROC MIXED statement 
tells SAS that you would like hypothesis tests for the variance and covariance 
components (described below). This option is not necessary if you are running a 
version of SAS prior to 6.12. The CLASS statement indicates that SCHOOL is a 
classification variable whose values do not contain quantitative information. 

Model specification. You use the MODEL statement to indicate fixed effects 
and the RANDOM statement to indicate random effects. The MODEL statement 
here may appear odd because it seems as if it has no predictors. In reality, it has 
one implied predictor, the vector 1, which represents the intercept. The 
/SOLUTION option asks SAS to print the estimates for the fixed effects. PROC 
MIXED, like HLM, includes an intercept by default. Other programs, such as 
MLwiN and Hedeker's MIXREG (Hedeker & Gibbons, 1996) require you to 
specify the intercept explicitly. If you would like to fit a model without an 
intercept, however, it is very easy: just add the option /NOINT to the model 
statement. 

The RANDOM statement is crucial and its specification is usually the tricki- 
est part about fitting mixed models. By default, there is always at least one 
random effect, here the lowest-level (within-school) residual rj. (This is similar 
to the default random effect in a typical regression model, representing the error 
term.) By specifying the intercept on this RANDOM statement, we are indicat- 
ing the presence of a second random effect-that the INTERCEPT in the 
MODEL statement (which is not explicitly present but implied) should be 
treated not only as a fixed effect (represented by yoo) but also as a RANDOM 
effect (represented by oo). The SUB= option on the RANDOM statement 
specifies the multilevel structure, indicating how the level-i units are divided 
into level-2 units. Here, the subgroups are designated by the classification 
variable SCHOOL. Without this statement, the model fit would not be that in (3) 
above, but would rather be Yj = -oo + rij. In other words, the variance compo- 
nent representing the effect of school (for the uoj which has variance roo) would 
be omitted. 

The results of fitting this model are presented below. For comparison, exam- 
ine the equivalent model fit using HLM (Bryk and Raudenbush 1992; pp. 
62-66). 
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REML Estimation Iteration History 
Iteration Evaluations Objective Criterion 

0 1 34899.608417 
1 2 33913.503461 0.00000109 
2 1 33913.484655 0.00000000 

Convergence criteria met. 

Covariance Parameter Estimates (REML) 

Cov Parm Ratio Estimate Std Error Z PR > I Z 
INTERCEPT 0.21992178 8.60965741 1.07782320 7.99 0.0001 

Residual 1.00000000 39.14872611 0.66065147 59.26 0.0001 

Model Fitting Information for MATHACH 

Description Value 

Observations 7185.000 
REML Log Likelihood -23558.4 
Akaike's Information Criterion -23560.4 
Schwarz's Bayesian Criterion -23567.3 
-2 REML Log Likelihood 47116.79 

Solution for Fixed Effects 

Parameter Estimate Std Error DDF T PR > ITI 
INTERCEPT 12.63698083 0.24433777 159 51.72 0.0001 

Interpreting the output of fitting an unconditional means model. First notice 
that the model converged quickly. PROC MIXED is a very efficient program 
making it particularly nice for fitting of a wide range of models. (Of course, as 
models become more complex, they can take a while to converge. Imbalance 
can also increase the computational time.) 

The next section presents the Covariance Parameter Estimates. These are 
estimates for the random effects portion of the model. In this case, we find that 
the estimated value of Too = 8.6096 and the estimated value of r2 = 39.1487. 
(Differences between these estimates and those presented in Bryk & Rauden- 
bush, 1992, are due to the computational improvements between the two pack- 
ages. The differences between HLM 4.0 for Windows results and these results 
are much smaller). Hypothesis tests presented in this section indicate that both 
variance components are significantly different from 0 (although these tests may 
not be very reliable)'. These estimates suggest that schools do differ in their 
average MATHACH scores and that there is even more variation among students 
within schools. (The variance component within school is nearly five times the 
size of the variance component between schools). 

Another way of thinking about the sources of variation in MATHACH is to 
estimate the intraclass correlation, p. This is equivalent to expressing the 
variance-covariance matrix in (4) in correlation form, with l's on the diagonal 
and p on the appropriate off-diagonal elements. We estimate p, which tells us 
what portion of the total variance occurs between schools, as: 
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Too00 8.6096 
P A18 

,Toor2 8.6096 + 39.1487 

This tells us that there is a fair bit of clustering of MATHACH within school. 
This suggests that an OLS analysis of these data would likely yield misleading 
results.2 

The next section presents information that can be useful for comparing the 
goodness of fit of multiple models with the same fixed effects but different 
random effects.3 The two criteria likely to be the most helpful are the AIC 
(Akaike's Information Criterion) and the SBC (Schwarz's Bayesian Criterion). 
Models that fit better will have values of these statistics that are larger. (Note 
that when these values are negative, as they are here, lower numbers in absolute 
values are preferred.) Both penalize the log-likelihood for the number of param- 
eters estimated, with the SBC taking a higher penalty for increased complexity. 
Without a model against which we can compare these statistics they are not very 
useful. As you fit models with different specifications for the random effects, as 
I do later in this paper, changes in these statistics help assess differences in 
goodness of fit (also see Littell et al., 1996). 

The last section presents parameter estimates for the fixed effects. As there is 
only one fixed effect, the intercept, the estimate of 12.64 tells us the average 
school-level math achievement score in this sample of schools. (Note, this is not 
the same as the average student level achievement score.) 

Including Effects of School Level (level 2) Predictors 

The unconditional means model provides a baseline against which we can 
compare more complex models. We begin with the inclusion of one level-2 
variable, MEANSES, which indicates the average SES of the children within the 
school. Remember that MEANSES has a mean of 0 (it is centered about the 
grand mean), which facilitates interpretation of the intercept term oo. Thus, our 
first conditional model, in which MATHACH is expressed as a function of 
school-level SES can be written as: 

Yij =Oj + rij and oj = "oo +Y1o MEANSESj+ Uo0 
where riij -N(0,&C2) and uoj~ N(0,oo) 

Substituting the level-2 equation into the level-i equation yields: 

Yi = [00 + yo,0 MEANSESj ] + [uoj + ri ] (5) 
To emphasize that this combined model is the sum of two parts-a fixed part 
and a random part-I have separated the two components using brackets [ ]. 
The two terms in the first bracket represents the fixed part, consisting of the two 
gamma terms. The two terms in the second bracket represent the random part, 
consisting of the u0o (which represents variation in intercepts between schools) 
and the rij (which represents variation within schools). As before, we estimate 
these random effects through their respective variance components, -oo and r2. 
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Notice that the only difference between the conditional model in (5) and the 
unconditional model in (3) is the addition of an extra fixed effect for 
MEANSES. Therefore, the MODEL statement, which identifies the fixed ef- 
fects, must change to incorporate the predictor. The RANDOM statement, which 
identifies the random effects remains the same. 

We fit the model in (5) using the following code: 

proc mixed noclprint covtest; 
class school; 
model mathach = meanses/solution ddfm=bw; 
random intercept/sub=school; 

Notice that nothing has changed except for the MODEL statement, which now 
includes the additional fixed effect for MEANSES. Here, for simplicity, I restrict 
attention to a single level-2 variable. Additional school level predictors can be 
included as fixed effects by appending the variable names to the MODEL 
statement. The other change is the option /DDFM=BW. This option asks SAS to 
use the "between/within" method for computing the denominator degrees of 
freedom for tests of fixed effects. Further details on this option are given in 
Littell et al. (1996) and SAS Institute (1996, pp. 565-566). 

Here is the output: 

REML Estimation Iteration History 
Iteration Evaluations Objective Criterion 

0 1 33999.764766 
1 2 33759.813934 0.00000000 

Convergence criteria met. 

Covariance Parameter Estimates (REML) 

Cov Parm Ratio Estimate Std Error Z Pr > IZI 
INTERCEPT 0.06730855 2.63565706 0.40364376 6.53 0.0001 

Residual 1.00000000 39.15783186 0.66081390 59.26 0.0001 

Model Fitting Information for MATHACH 

Description Value 

Observations 7185.000 
REML Log Likelihood -23480.6 
Akaike's Information Criterion -23482.6 
Schwarz's Bayesian Criterion -23489.5 
-2 REML Log Likelihood 46961.28 

Solution for Fixed Effects 

Parameter Estimate Std Error DDF T Pr > ITI 
INTERCEPT 12.64945599 0.14921620 158 84.77 0.0001 
MEANSES 5.86349698 0.36130302 158 16.23 0.0001 
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Tests of Fixed Effects 

Source NDF DDF Type III F Pr > F 

MEANSES 1 158 263.37 0.0001 

Interpreting the output with a single level-2 predictor. Because there are 
now fixed effects (other than the INTERCEPT) to be estimated, the output 
includes an additional section presenting relevant hypothesis tests for the fixed 
effects. This Tests of Fixed Effects section can be helpful when you include a 
CLASSification variable [a variable that you want represented as multiple 
dummies] as a fixed effect and you would like a pooled test across all the levels 
of that variable. If you would like to suppress this additional section (as we do in 
subsequent illustrative programs in this paper) simply add the option NOTEST 
to the MODEL statement. 

Fixed effects information. The term for the INTERCEPT, 12.65, estimates 

0oo, the school mean math achievement when the remaining predictors (here, 
just MEANSES) are 0. Because MEANSES is centered at the grand mean (with 
a mean of 0), 0oo is the estimated MATHACH in a school of "average 
MEANSES." The term for MEANSES, 5.86, provides our estimate of the other 
fixed effect, 'ol, and tells us about the relationship between math achievement 
and MEANSES. Schools that differ by 1 point in MEANSES differ by 5.86 
points in MATHACH. Its standard error of 0.36 yields an observed t-statistic of 
16.22 (p < .0001), which indicates that we reject the null hypothesis that there is 
no relationship between a school's SES and the math achievement scores of its 
students. 

Covariance parameter estimates. These tell us about the random effects. We 
now estimate Too to be 2.65 and U2 to be 39.16. Although we have used the same 
symbols in models (3) and (5) to represent these variance components, note that 
they have very different meanings. In the previous model, there were no predic- 
tors, so these were unconditional components. Having added a predictor, these 
are now conditional components. Notice that the conditional component for the 
variance within school (the residual component representing O2) has remained 
virtually unchanged (going from 39.15 to 39.16). The variance component 
representing variation between schools, however, has diminished markedly (go- 
ing from 8.61 to 2.64). This tells us that the predictor MEANSES explains a 
large portion of the school-to-school variation in mean math achievement. 

One way of measuring how much of the variation in school means is ex- 
plained by MEANSES is to compute how much the variance component for this 
term (Too) has diminished between the two models. As discussed by Bryk & 
Raudenbush (1992, p. 65), we compute this as (8.61 - 2.65)/8.61, which yields 
.69, or 69%. We interpret this by saying that 69% of the explainable variation in 
school mean math achievement scores is explained by MEANSES. (Note that 
this is not the same as a traditional R2 statistic. This percentage only talks about 
the fraction of explainable variation that is explained. If the amount of varia- 
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tion between schools is small, we might be explaining a large amount of very 
little! For further discussion, see Snijders and Bosker, 1994.) 

Having explained 69% of the explainable variation, you might also want to 
know whether there is still any variation in school means remaining to be 
explained. The output provides two windows on this question. The first is the 
test for the residual variance component for intercepts, which rejects the null that 
Too is 0 with a z-statistic of 6.53 (p < .0001). Although this test is not very 
reliable, it suggests that even after including MEANSES, there is additional 
explainable variation present. The second window is to compute the residual 
intraclass correlation, the intraclass correlation among schools "of comparable 
SES." Once again, we estimate the intraclass correlation as that fraction of the 
sum of both variance components that occurs at the school level (i.e., 
2.63/[2.63 + 39.16]), which is 0.06. We can view this residual intraclass correla- 
tion as a partial correlation, which tells us about the similarity in math achieve- 
ment among students within schools after controlling for the effect of 
MEANSES. 

Including Effects of Student-Level (level-I) Predictors 

I illustrate the effect of including student level predictors by initially examin- 
ing a model with only one student-level predictor (SES). To ease interpretation, 
and to focus on those features of the procedure unique to the inclusion of level-i 
predictors, I exclude level-2 predictors in this formulation. After reviewing the 
steps necessary for including level-i predictors, I fit a combined model. 

Begin by thinking about what the model to include a student level predictor 
might look like. One simple model might be: 

Yij = fP0 + P31 SESij + rij, 

oj = oo + Uoj (6) 
13 io+ui (6) 

Pl j 'Y1lO + Ulj, 
where rij N(0, r2) and( Uo N[( O (? TooTo)1 NO 

uljua j T1T1 

This model differs from the simple unconditional model in (3) in three important 
ways. First, we have included a single level-i predictor, SES. Second, having 
included this additional fixed effect, we have also included an additional random 
effect. Thus, not only are we stipulating that a student's math achievement score 
is related to his or her SES, but also that the relationship between SES can vary 
across schools. (If we did not want to allow this slope coefficient to vary across 
schools, we could have "fixed" it by eliminating the term u1j from the equation 
for the slope 11j.) Third, having allowed the intercepts and slopes to vary across 
schools, we now have a larger tau matrix to represent the random effects across 
schools. Not only are there elements representing the variance components for 
both the intercept and slope, there is also a covariance component, representing 
the correlation between intercepts and slopes (o10). 
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Although this model can be fit easily in PROC MIXED, I have chosen not to 
present the code for doing so because of an issue about interpretation arising 
from the model parameterization. Consider the interpretation of the betas in 
equation (6). Across the full sample, SES has a mean of 0. (It is grand-mean 
centered.) Therefore, 01o represents the average math achievement for a student 
of average SES across the full sample. It does not represent the average math 
achievement for students in school j (controlling for SES). As we add predictors 
to our model, we would like to see how these conditional school means relate to 
these other predictors. (Consider, for example, the interpretation of the effects of 
MEANSES presented in the previous section.) To render the parameters more 
interpretable, and to lead to a model in which we have both level-i and level-2 
predictors, we can rescale SES to be centered about its school mean, by comput- 
ing CSESij= SESi - MEANSESj. Unlike some specialized software programs 
(e.g., HLM) which ask whether you want to center variables, the data analyst 
must be proactive when using PROC MIXED. Given the misconceptions and 
misunderstandings surrounding the rationale behind centering and the effects of 
the different forms of centering (Kreft, de Leeuw, & Aiken, 1995), some might 
argue that this provision (or lack thereof) is an advantage of this program. 

Let us therefore consider the following model representing the effect of a 

level-1 predictor: 

Yij = Ioj + PIj (SESi - SESj) + rij, 
Poj = 'oo + Uog, (7a) 
Plj= Y10o + u11, 

where rij N(O,Ur2) and U(Uj N [N [ 0 •T)0ooT ? 

which can be rewritten as: 

Yij= Y0oo + uoj+(-to + u)(SES_ - SES) + r, (7b) = 
[Yoo + "Ylo(SESij - SESj)] + [uoj + ulj(SESij 

- 
SESj) 

+ 
ri] 

with the assumptions as specified in (7a). This model :wo fixed effects (an 
intercept and a slope for centered SES) and three rawdom effects: for the 
intercepts (registered by the u0o), for the slopes (registered by the u1j), and for 
the students within schools (registered by the rii). 

We write the PROC MIXED code for fitting this model by specifying the 
fixed effects on the MODEL statement and the random effects on the RANDOM 
statement as: 

proc mixed noclprint covtest noitprint; 
class school; 
model mathach = cses/solution ddfm=bw notest; 
random intercept cses/sub=school type=un; 

The NOITPRINT option on the PROC statement tells SAS not to print the 
iteration history (done here to save space). The MODEL statement includes the 
fixed effect for CSES, the centered SES variable. (Remember that the intercept 
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is included by default; the notest option suppresses the printing of additional 
hypothesis tests for the fixed effects.) Notice that the RANDOM statement has 
changed quite a bit from its simpler specification. Now there are two random 
effects--one for the INTERCEPT and one for the CSES slope. (Remember that 
the third random effect, for the rij, which represents the variation within-school 
across students, is included by default.) In addition, we have added an option 
specifying the structure of the variance-covariance matrix for the intercepts and 
slopes. The structure specified, UN, indicates an unstructured specification, 
which allows all three parameters to be determined by the data. This specifica- 
tion is common in school effects analyses. In many other multilevel analyses, 
you may want to try alternative specifications. I discuss this further when 
describing methods for fitting individual growth models. In addition to the 
general PROC MIXED documentation, this topic is also addressed in Wolfinger 
(1996) and Murray and Wolfinger (1994). 

The output from this procedure is: 

Covariance Parameter Estimates (REML) 

Cov Parm Ratio Estimate Std Error Z Pr > IZI 
INTERCEPT UN(1,1) 0.23642291 8.67686615 1.07855368 8.04 0.0001 

UN(2,1) 0.00138287 0.05075209 0.40619222 0.12 0.9006 
UN(2,2) 0.01890945 0.69398853 0.28078887 2.47 0.0135 

Residual 1.00000000 36.70061535 0.6257511358.65 0.0001 

Model Fitting Information for MATHACH 

Description Value 
Observations 7185.000 
REML Log Likelihood -23357.1 
Akaike's Information Criterion -23361.1 
Schwarz's Bayesian Criterion -23374.9 
-2 REML Log Likelihood 46714.24 
Null Model LRT Chi-Square 1065.704 
Null Model LRT DF 3.0000 
Null Model LRT P-Value 0.0000 

Solution for Fixed Effects 
Parameter Estimate Std Error DDF T Pr > ITI 
INTERCEPT 12.64934611 0.24445234 159 51.75 0.0001 
CSES 2.19319235 0.12825918 7024 17.10 0.0001 

Interpreting the output from models with level-i predictors. Focus first on the 
fixed effects. The estimate for oo (12.65) indicates that the estimated average 
school mean math achievement score, controlling for student SES, is 12.65. The 
estimate for Yo, (2.19) indicates that the estimated average slope representing 
the relationship between student SES and math achievement is 2.19. The stan- 
dard errors for both these parameter estimates are very small, resulting in large 
t-statistics and low p-values. We conclude that, on average, there is a statistically 
significant relationship between student SES and math achievement scores. 
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The covariance parameter estimates tell us how much these intercepts and 
slopes vary across schools. Although SAS presents these estimated variance- 
covariance components in list form, we may rewrite the first three elements in 
the list as: 

( T 01 o (8.68 0.05 

T 10 T1 0.05 0.69) 

So, 8.68 tells us about the variability in intercepts, 0.69 tells us about the 
variability in slopes, and 0.05 tells us about the covariance between intercepts 
and slopes. Estimated standard errors and tests of the null hypotheses that each 
of these components is 0 are given in the remaining columns of the list. What do 
we see? First, that the intercepts are very variable; in other words, schools do 
differ in average math achievement levels even after controlling for the effects 
of student SES. Second, that the slopes are also variable (variance component of 
.69). We reject the null that this variance component = 0 with p = .0135. Third, 
there is little correlation between intercepts and slopes (covariance component 
0.05, p = .9006). In other words, there is no evidence that the effects of student 
SES on math achievement differ depending upon the average math achievement 
in the school. 

How much of the within school variance in math achievement is explained by 
student SES? Just as we compared the variance component for oo in the 
unconditional and conditional models (presented in the previous two sections), 
so, too, can we compare the estimates for or2 for the unconditional and condi- 
tional models. Returning to the output on page 7 we find an unconditional 
estimate of 39.15. Here we have a conditional estimate of 36.70. Inclusion of 
student level SES has therefore explained (39.15-36.70)/39.15 = 0.06, or 6% of 
the explainable variation within schools. Comparatively speaking, then, school 
SES explains much more of the variation in school level math achievment than 
does student SES explain the within-school variation in student level achieve- 
ment. When interpreting these results, however, the previously mentioned cau- 
tions about the term "explained" variation in the context of multilevel models 
remain, and even escalate. Interested readers should consult Snijders and Bosker 
(1994) for a fuller discussion of this issue. 

Including Both Level-i and Level-2 Predictors 

Having separately specified models with either just level-i predictors or 
level-2 predictors, we can now consider models which contain variables of both 
types. Although simplicity would have us fit a model with just the effects of 
student SES and school SES, to achieve parallelism with Bryk and Raudenbush 
(1992), we also add in the effects of a second school level variable, SECTOR, 
coded as 0 for public schools and 1 for Catholic schools. 

Begin by thinking about how you would want to specify the model to be fit. I 
strongly advise you to write the model out, interpreting each of the parameters, 
before writing code to fit the model. As models get more complex, it is not 
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always obvious how to parameterize the model so that the output can be used 
directly to answer your research question. In the previous section, for example, 
we saw the gains that come from centering student SES within school only after 
writing out a model in which student SES was not centered. I find it helpful to 
write separate models at the two levels and then combine them together to yield 
the single level representation required for PROC MIXED. 

Consider the following model: 

Yij = foj + fj (SESij - SESJ) + r1 , 
Poji= Yoo + Yo MEANSESj + y02SECTORj + uj, (8a) 

j= Ylo + Y I IMEANSES1 + y12SECTORj + u1j, 

where r ijr, N(O,Ur2) and ( UjjN [(0) (TIoTO1)] 

Notice the similarities between this model (which includes both level-i and 
level-2 predictors) and the previous model (eq 7) that included only a level-i 
predictor. The level-i part of the model remains the same (because there is just 
the one level-i predictor), but each part of the level-2 part of the model now has 
two additional fixed effects. The number of random effects remains the same. 
The number of random effects may be increased if an additional level-i variable 
is added to the model. 

We can combine the level-i and level-2 equations together to yield: 

Yi 
= 

yoo 
+ 

yo0MEANSES1 
+ y02SECTOR1 + y0o(SESij - SESj) 

+ 11MEANSES$SES_, - SES) + y12SECTORSESj - SES1) (8b) 
"+ Uoj + UI/SESij - SESJ) + rij 

Having written out a combined equation, we can now write the requisite PROC 
MIXED code. Each fixed effect on the first two lines of the equation in 8b must 
appear in the MODEL statement (because this is where fixed effects are indi- 
cated) and each random effect (on the last line of equation 8b) must appear in 
the RANDOM statement. By default, SAS includes an intercept as a fixed effect 
on the MODEL statement and a within-group random effect (for the ri) on the 
RANDOM statement. Interaction terms may be easily specified in the MODEL 
statement by using an asterisk (*) between the relevant variables. The code: 

proc mixed noclprint covtest noitprint; 
class school; 
model mathach = meanses sector cses meanses*cses 

sector*cses/solution ddfm=bw notest; 
random intercept cses/type=un sub=school; 

yields the output: 
Covariance Parameter Estimates (REML) 

Cov Parm Ratio Estimate Std Error Z Pr > IZI 
INTERCEPT UN(1,1) 0.06485969 2.38172336 0.37171728 6.41 0.0001 

UN(2,1) 0.00524422 0.19257382 0.20451479 0.94 0.3464 
UN(2,2) 0.00276060 0.10137258 0.21381009 0.47 0.6354 

Residual 1.00000000 36.72116429 0.62613331 58.65 0.0001 
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Model Fitting Information for MATHACH 

Description Value 

Observations 7185.000 
REML Log Likelihood -23251.8 
Akaike's Information Criterion -23255.8 
Schwarz's Bayesian Criterion -23269.6 
-2 REML Log Likelihood 46503.67 
Null Model LRT Chi-Square 220.5683 
Null Model LRT DF 3.0000 
Null Model LRT P-Value 0.0000 

Solution for Fixed Effects 

Parameter Estimate Std Error DDF T PR > ITI 
INTERCEPT 12.11358496 0.19880323 157 60.93 0.0001 
CSES 2.93876223 0.15509265 7022 18.95 0.0001 
MEANSES 5.33911631 0.36929107 157 14.46 0.0001 
SECTOR 1.21667252 0.30637896 157 3.97 0.0001 
CSES*MEANSES 1.03887054 0.29890063 7022 3.48 0.0005 
CSES*SECTOR -1.64258263 0.23979107 7022 -6.85 0.0001 

Interpreting the output of fitting models with both level-i and level-2 predic- 
tors. Begin with the fixed effects. All are significantly different from 0 
(p < .001). As SECTOR is a dummy variable indicating whether the school is a 
public school or a Catholic school, it can be helpful to rewrite a pair of fitted 
models, one for each sector, by substituting in the values of 0 and 1 for 
SECTOR: 

Public: MATHACH = 12.11 + 5.34 MEANSES + 2.94 CSES 
+ 1.03 MEANSES*CSES 

Catholic: MATHACH = 13.33 + 5.34 MEANSES + 1.30 CSES 
+ 1.03 MEANSES*CSES 

The main effect of SECTOR tells us that the intercepts in these two models are 
significantly different. The interaction between CSES and MEANSES tells us 
that the slopes for CSES differ depending upon the MEANSES of the school; 
the interaction between CSES and SECTOR tells us that the slopes for CSES are 
significantly different in the two sectors. (I should note that I tested to see 
whether there was a two-way interaction between MEANSES and SECTOR and 
a three way interaction between MEANSES, CSES, and SECTOR and found 
none.) 

We could use these equations to graph the results of the multilevel model (as 
done with these data by Bryk & Raudenbush, 1992, p. 73). Because the variable 
MEANSES has a grand mean of 0, and CSES is centered at its school mean, the 
six parameter estimates have easy and direct interpretations. The average public 
school math achievement score is 12.11; the average Catholic school score is 
13.33. At average values of student and school SES, these means are signifi- 
cantly different. Student and school level SES are associated with math achieve- 
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ment in both sectors, although the magnitude of the student effect differs across 
sectors. There is also an interaction between student and school SES. In both 
sectors, the slope for student SES is higher in schools with higher mean SES 
levels. 

The findings with respect to the random effects are a bit different. The 
variance component for intercepts (Too) remains significantly different from 0, 
suggesting that there is additional variation in school mean achievement levels 
that is not explained by these three factors and their interactions. Were this an 
actual analysis, you would interpret this finding as reason to believe that there 
are additional school level factors that might explain the variation in school 
means. 

The variance component for slopes, in contrast, is very small (.10), and the 
null hypothesis that the slopes do not differ across schools cannot be rejected 
(p = .64). Similarly, the component representing the covariance between inter- 
cepts and slopes is also small (.19) and we cannot reject the null hypothesis that 
it, too, is 0 (p = .35). 

These findings suggest that a simpler model, in which the intercepts vary 
across schools but the slopes do not may provide a reasonable fit to these data. 
We would fit such a model as follows: 

proc mixed noclprint covtest noitprint; 
class school; 
model mathach = meanses sector cses meanses*cses 

sector*cses/solution ddfm=bw notest; 
random intercept/sub=school; 

Notice that the fixed portion of the model (on the MODEL statement) has 
remained unchanged. The random portion, however, is now simpler, involving 
only random intercepts, not slopes. This simplification, which leaves us with 
only one explicit random effect, allows us to drop the TYPE = UN option from 
the random statement. Because the fixed portion of the model is unchanged, we 
can now use the goodness-of-fit statistics to compare the two models. Fitting 
this model to the data, we find: 

AIC SBC -2LL 
random intercepts and slopes -23,255.8 -23,269.6 46,503.67 
random intercepts -23,254.4 -23,261.3 46,504.79 

Recalling that we want larger values of the AIC and SBC, it appears that a 
model in which we do not treat the slopes as random (the second model) 
provides a better fit. Both the AIC and SBC are larger with this more restricted 
model, and the change in the -2LL is only 1.12. An approximate test of the null 
hypothesis that this change is 0 is given by comparing the differences in the 
-2LL's to a X2 distribution, here on two degrees of freedom (to correspond to 
the two additional parameters).4 This conclusion is identical to that reached by 
Bryk and Raudenbush (1992, p. 76), in their analysis of these data. 
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Individual Growth Models 

There are several ways you can fit individual growth models in PROC 
MIXED. One approach uses a RANDOM statement (as illustrated in the school- 
effects analyses). An alternative approach uses a REPEATED statement (which 
mimics classical repeated measures analysis of variance). Although experienced 
users tend to prefer the latter approach, I begin with the former approach, 
because it is easier to see the parallels between the school effects models 
presented in the previous section and the individual growth models under 
discusssion here. I then turn to the use of the REPEATED statement. 

An Unconditional Linear Growth Model 

Let's begin with a simple two-level model, in which the level-i model is a 
linear individual growth model, and the level-2 model expresses variation in 
parameters from the growth model as random effects unrelated to any person- 
level covariates. By convention (and to facilitate extension to a 3-level model in 
which individuals within groups are tracked over time), we represent the param- 
eters in the level-i (within person) model using 7rr and the parameters in the 
level-2 (between-person) model using P. Thus, we may write the level-i and 
level-2 models as: 

Yii = 
Iroj + 7r 1j (TIME)ij + rij, where rj ,- N(0,r2) 

and (9a) 

rj: i 
- 

10 + 
Uj1 where (Ulj 0 

, T0 T)] 

which can be written in combined form as: 

Yi= [3oo + 1oTIMEij] + [u0o + ujTIMEi + rj] (9b) 

Notice the direct parallels with the model used for the school effects analysis in 
(7b). As before, the multilevel model is expressed as the sum of two parts: a 
fixed part, which contains two fixed effects (for the intercept and for the effect 
of TIME) and a random part, which contains three random effects (for the 
intercept, the TIME slope, and the within person residual rij). Notice that this 
formulation treats both the intercept and slope as random effects (although this 
assumption can be changed), and that there are no level-2 covariates (this, too, 
can be changed). 

To fit this model, you must first create a person-period data set in which each 
individual has one record for every time-period that he or she is observed. (SAS 
code to create person-period data sets is presented in the appendix.) With this 
data set, the syntax to fit the individual growth model using PROC MIXED 
looks quite similar to that for fitting a school-effects analysis with a single 
level-i predictor and random intercepts and slopes: 
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proc mixed noclprint covtest; 
class id; 
model y = time/solution ddfm=bw notest; 
random intercept time/subject=id type=un; 

Notice the similarity between this code and that for the school effects analysis. 
The CLASS variable has changed from SCHOOL to ID to indicate that the data 
represent multiple observations over time for individuals. This CLASS variable 
is used on the RANDOM statement to indicate that when the random effects are 
specified, we want to allow both intercepts and slopes to vary across people. 

The MODEL statement indicates what type of growth model is to be fit. Be 
sure to consider a range of alternative options in specifying the growth model, 
and be careful about coding the variable TIME. As we saw in the school effects 
analysis, the interpretation of the intercept differed depending on how the within 
person variable (student SES, in our example) was expressed. Similarly, the 
intercept in the growth model can be specified in such a way that it represents 
initial status (by coding TIME = 0 for the first wave of data), average status (by 
centering TIME) or even final status (by coding time using negative numbers 
and letting 0 represent the last wave). If there are three or more waves of data, 
models allowing for curvilinear growth might be considered. 

The RANDOM statement indicates the random effects that you want to 
include in your model. As with the school effects analysis, this is probably the 
most difficult statement to write correctly. By default, there is one random effect 
in the model, for the rij, representing variation within persons. To fit an indi- 
vidual growth model, two additional sources of variation need to be included: in 
the INTERCEPTs and in the slopes for TIME. The options after the / indicate 
how to structure the variance-covariance matrix representing these sources of 
variation. 

* The SUBJECT=option (alias for SUB in school effects analyses) indicates 
that the data set is composed of a set of different "subjects." Subjects are 
assumed to be independent of each other; hence, the SUBJECT=ID com- 
mand indicates that the variance covariance matrix for the random effects is 
to be block diagonal, with identical blocks. 

* The TYPE=option specifies the structure of these diagonal blocks. Specify- 
ing TYPE=UN indicates that you would like to treat the variance-covariance 
matrix for the intercepts and slopes as unstructured, with a separate variance 
(or covariance) component for each of the elements. The unstructured option 
indicates that you would not like to place any structure on the variances for 
intercepts and variances for slopes (they can be different, which is usually 
essential as they are not likely to be identical!) and that you would not like to 
impose any structure on the covariance between these two either. 

I illustrate the results of this analysis using the data presented in Willett 
(1988) on the growth in opposite naming task on four occasions for 35 individu- 
als. TIME is coded 0, 1, 2, and 3, so that the intercept estimates the (true) value 
of opposite-naming skill at occasion 0 (initial status) and the slope estimates the 
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rate of change in (true) opposite-naming skill across occasions. This judicious 
coding of TIME (the level-i predictor) is done for the same reason student level 
SES was centered in the school effects analysis presented earlier. By choosing 
an appropriate scale for TIME, the parameters of the within-person growth 
model become interesting in their own right, making the modeling of them as a 
function of between-person covariates a vehicle for answering research ques- 
tions about inter-individual differences in growth. The results of fitting the 
model are: 

REML Estimation Iteration History 

Iteration Evaluations Objective Criterion 

0 1 1134.0992383 
1 1 1013.1957046 0.00000000 

Convergence criteria met. 

Covariance Parameter Estimates (REML) 

Cov Parm Ratio Estimate Std Error Z Pr > IZI 

INTERCEPT UN(1,1) 7.51691915 1198.7767899 318.38096701 3.77 0.0002 
UN(2,1) -1.12402041 -179.2555630 88.96341625 -2.01 0.0439 
UN(2,2) 0.83021660 132.40057143 40.21069632 3.29 0.0010 

Residual 1.00000000 159.47714286 26.95655716 5.92 0.0001 

Model Fitting Information for Y 

Description Value 

Observations 140.0000 
REML Log Likelihood -633.411 
Akaike's Information Criterion -637.411 
Schwarz's Bayesian Criterion -643.266 
-2 REML Log Likelihood 1266.823 
Null Model LRT Chi-Square 120.9035 
Null Model LRT DF 3.0000 
Null Model LRT P-Value 0.0000 

Solution for Fixed Effects 

Parameter Estimate Std Error DDF T Pr > ITI 

INTERCEPT 164.37428571 6.11884861 34 26.86 0.0001 
TIME 26.96000000 2.16660366 104 12.44 0.0001 

Interpreting the output from an unconditional individual growth model. No- 
tice that PROC MIXED converged in just two iterations, the minimum amount 
of time necessary for convergence to be evaluated. This rapid convergence 
results from the perfectly balanced data set. In other analyses, especially those 
with missing data, unbalanced data, or high degrees of collinearity, convergence 
is unlikely to be so rapid. 

Focus first on the estimates of the fixed effects. Because this is an individual 
growth model with no level-2 covariates, they can be interpreted in the usual 
way: 3oo = 164.37 is our estimate of the average intercept across persons (the 
average value of Y when TIME=O) and Pjo = 26.96 is our estimate of the 
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average slope across persons. Hence, the average person began with a score of 
164 and gained 27 points per testing occasion. Standard errors and tests can also 
be interpreted in the usual ways. We reject the null hypotheses that either of 
these parameters are 0 in the population. 

Focus next on the random effects. We may write the estimates for the first 
three variance-covariance components in matrix form as: 

Too To1 (1198.78 -179.26 

\IOT 11 j 
- 179.26 132.40 

and we also conclude that the estimated value of .2 is 159.48. In addition to 
these estimates, SAS also produces standard errors for these estimates, and 
hypothesis tests of the null hypotheses that these population variances (and 
covariances) are 0. Here, you can see that all the tests reject, including those for 
the terms we are most interested in: for Too and for T11,, which tell us that there is 
variation in both the intercepts and slopes that potentially could be explained by 
a level 2 (person-level) covariate. 

The output presents several goodness of fit statistics that can be used to 
evaluate this model, and to compare the goodness of fit for this model with that 
of other (nested) models. In addition to indicating the number of observations, 
we are presented with the actual REML log-likelihood, and -2RLL. Please 
consult the SAS manual for details on these statistics. 

A Linear Growth Model With a Person-Level Covariate 

Having fit an unconditional growth model, we may now consider a model in 
which we explore whether variation in intercepts and slopes is related to a 
covariate. Begin by considering the model: 

Yi= oj + rlj(TIME)ij 
+ 

rij, 
where rij- N(0,&2) 

and 

"i Poo + COVAR 
where ' N i 0 oo 

""Tj 
= 1 C + +11( u)lj U lj ' TI0 TII 

Were we to fit this model, the interpretation of the fixed effects for 3oo and 1o0 
would be based upon conceiving of a case in which the value of COVAR was 0. 
As this covariate never even approaches 0, this parameterization of the level-2 
model is not the most useful. So instead, we center the covariate at its grand 
mean, and consider the model: 

Yii = 'oj + 'I"i j(TIME)ij + rij, where rij 
r 

N(0,02) 
and (10a) 

"roj = Poo + ol(COVARj - COVAR) + Uoj, where uo N [(0) , 1Too To)] 
= (COVARUl - CO R) + 11 

7Tlj = P10 + PI1(COVARj - COVAR) + Ulj, 
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Now, the interpretation of these fixed effects is far more straightforward. oo 
represents the average intercept in the individual growth model and 10o repre- 
sents the average slope. 

Substituting the level-2 models into the level-i model yields the combined 
representation that most closely resembles the statements needed to use PROC 
MIXED: 

Yj = +oo + Po(TIME)ij+ P0oI(COVARJ - COVAR) + (1Ob) 
pI,1(COVARj 

- COVAR)(TIME),J + uoj + uj(TIME)ij + rij 

Letting CCOVAR represent the centered covariate, we fit this model by writing: 
proc mixed noclprint covtest; 

class id; 
model y = time ccovar time*ccovar/s ddfm=bw notest; 
random intercept time /type=un sub=id gcorr; 

Notice the similarity between this syntax and the school effects model. Notice, 
too, that we have added the option GCORR to the RANDOM statement, which 
tells SAS to print the estimated correlation matrix amongst the random effects 
(see below). Fitting this model we find: 

G Correlation Matrix 

Parameter Subject Row COL1 COL2 

INTERCEPT ID 1 1 1.00000000 -0.48945185 
TIME ID 1 2 -0.48945185 1.00000000 

Covariance Parameter Estimates (REML) 

Cov Parm Ratio Estimate Std Error Z Pr > I ZI 

INTERCEPT UN(1,1) 7.75291483 1236.4127057 332.40217831 3.72 0.0002 
UN(2,1) -1.11760998 -178.2332472 85.42977775 -2.09 0.0370 
UN(2,2) 0.67250510 107.24919114 34.67670438 3.09 0.0020 

Residual 1.00000000 159.47714286 26.95655716 5.92 0.0001 

Model Fitting Information for Y 

Description Value 

Observations 140.0000 
REML Log Likelihood -630.142 
Akaike's Information Criterion -634.142 
Schwarz's Bayesian Criterion -639.968 
-2 REML Log Likelihood 1260.285 
Null Model LRT Chi-Square 120.7249 
Null Model LRT DF 3.0000 
Null Model LRT P-Value 0.0000 

Solution for Fixed Effects 

Parameter Estimate Std Error DDF T PR > ITI 
INTERCEPT 164.37428571 6.20609540 33 26.49 0.0001 
TIME 26.96000002 1.99388078 103 13.52 0.0001 
CCOVAR -0.11355272 0.50401189 33 -0.23 0.8231 
TIME*CCOVAR 0.43285774 0.16192784 103 2.67 0.0087 
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Interpreting the output from a linear growth models with a person-level 
covariate. First examine the fixed effects. Because we grand mean centered our 
level-2 covariate, the estimates for the INTERCEPT and for TIME (i.e., for 3O 
and 310) are identical to what they were in the unconditional model estimated in 
the previous section and the interpretation is similar as well. The only difference 
now is that we add the phrase "controlling for the covariate" to the interpreta- 
tion. 

The coefficients for the centered covariate and its interaction with time are 
new. The coefficient for CCOVAR (-0.11) captures the relationship between the 
covariate and initial status. As the standard error is over four times larger than 
the estimate itself, we conclude that there is no relationship between initial 
status and the covariate. With respect to the growth rates, however, we do find 
an effect of the covariate. The parameter estimate of .43 indicates that individu- 
als who differ by 1.0 with respect to the covariate have growth rates that differ 
by 0.43. 

The estimate for U2 has remained unchanged at 159.47. But the estimates for 
the variance-covariance matrix for the slopes have changed to: 

(oo00: 1 (1236.41 -178.23 
(- 178.23 107.25 

T10 TI1 

Comparing these estimates to those from the unconditional model (in the previ- 
ous section), we see that when it comes to estimating initial status, inclusion of 
the covariate did not help at all (it did not reduce the size of the variance 
component for intercepts). Indeed, the variance component actually increased 
slightly! But inclusion of the covariate did improve the fit of the growth rates. 
The variance component for growth rates went from 132.40 to 107.25. Comput- 
ing (132.40- 107.25)/132.40=0.19, we find a 19% reduction. In other words, the 
covariate accounts for 19% of the explainable variation in growth rates. 

Exploring the Structure of Variance Covariance Matrix Within Persons 

The classic growth models fit in the previous two sections place a common, 
but sometimes unrealistic, assumption on the behavior of the rij, the within- 
person residuals over time. Were we to fit a model in which only the intercepts 
vary across persons, we would be assuming a compound symmetric error 
covariance matrix for each person. When we fit a model in which the slopes 
vary as well, we introduce heteroscedasticity into this error covariance matrix 
(which can be seen through the inclusion of the effect of TIME in the random 
portion of the model in equation 9b). 

How realistic are such assumptions? One of the strengths of PROC MIXED is 
that it allows the user to compare different structures for the error covariance 
matrix. Instead of the intercepts and slopes as outcomes model in (9a), consider 
the following simpler model for observations over time: 
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Yij= rro + rr (TIME)ij + rij, where rij  N(O,E) 
IToj = oo, (11 a) 

Ij = P10o 
In this model, the intercepts and growth rates are assumed to be constant across 
people. But the model introduces a different type of complexity: the residual 
observations within persons (after controlling for the linear effect of TIME) are 
correlated through the within-person error variance-covariance matrix 1. By 
considering alternative structures for I (that ideally derive from theory), and by 
comparing the goodness of fit of resulting models, the user can determine what 
type of structure is most appropriate for the data at hand. 

Many different types of error-covariance structures are possible. If there are 
only three waves of data, it is worth exploring only a few of these possibilities 
because there is so little data for each person. With additional observations per 
person (in this example we have four), additional structures for the I matrix 
(called the R matrix in the language of PROC MIXED) are possible. The 
interested reader is referred to the SAS System for Mixed Models (Littell et al., 
1996; pp. 92-102), the PROC MIXED documentation in Getting Started with 
PROC MIXED (Latour et al., 1994; pp. 57-58) and the helpful paper by 
Wolfinger (1996) devoted entirely to this topic. 

The structure of the within-person error covariance matrix is specified using a 
REPEATED statement. To fit the model in (11a) under the assumption that I is 
compound symmetric we write: 

proc mixed noclprint covtest noitprint; 
class id wave; 
model y = time/s notest; 
repeated wave/type=cs subject=id r; 

Notice that I have added a second CLASS variable (WAVE) to indicate the time 
structured nature of the data within person and I have used WAVE on the 
REPEATED statement. WAVE differs from TIME in that WAVE is treated as a 
series of dummies, whereas TIME is treated as a continuous variable to yield the 
growth model. The variable specified on the REPEATED statement must be 
categorical (although it need not be equal interval). The TYPE=option is crucial, 
for it specifies the form of the within-person variance-covariance matrix. In 
addition to the compound symmetry specification (CS) shown here, other possi- 
bilities include UN (for unstructured) and AR(1) for autoregressive with a lag of 
one. The SUBJECT=ID tells SAS that there are to be separate blocks of this 
matrix, one for each subject. The R option asks SAS to print the R matrix. 

Here is the output from the procedure run with a compound symmetry 
assumption: 

Covariance Parameter Estimates (REML) 

Cov Parm Ratio Estimate Std Error Z Pr > IZI 
DIAG CS 2.40703008 904.80538381 242.59019002 3.73 0.0002 
Residual 1.00000000 375.90115385 52.12811095 7.21 0.0001 
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Model Fitting Information for Y 

Description Value 

Observations 140.0000 
REML Log Likelihood -650.170 
Akaike's Information Criterion -652.170 
Schwarz's Bayesian Criterion -655.097 
-2 REML Log Likelihood 1300.340 
Null Model LRT Chi-Square 87.3867 
Null Model LRT DF 1.0000 
Null Model LRT P-Value 0.0000 

Solution for Fixed Effects 

Parameter Estimate Std Error DDF T Pr > ITI 

INTERCEPT 164.37428571 5.77664310 34 28.45 0.0001 
TIME 26.96000000 1.46560793 104 18.40 0.0001 

The SAS System for Mixed Models presents a nice discussion of how to compare 
error structures (Littell et al., 1994; pp. 92-102). The idea is to compare 
goodness of fit statistics for different error structures, determining which one 
seems to fit best. As a point of comparison, consider selected results presented 
below obtained when two additional error structures were posited: Autoregres- 
sive (1) and totally unstructured. 

Assumption N parameters AIC SBC -2RLL 

Compound Symmetry 2 -652.17 -655.10 1300.34 

AR (1) 2 -636.73 -641.66 1273.47 

Unstructured 10 -641.71 -656.35 1263.42 

Recall that we prefer models in which the AIC and SBC are larger and the 
-2RLL is smaller. Although the totally unstructured E yields the best value of 
-2RLL, it does so at the price of many parameters. The estimated variance 
covariance matrix from this model is: 

2 / 11 U12 '13 a14 1308 977 921 564 
A21 22 23 24 977 1120 1018 856 

631 032 23 34 921 1018 1289 1081 

41 42 43 62 564 856 1081 1415 

Notice the structure of this matrix-the variances along the diagonal are fairly 
similar, and the off diagonal elements decrease as they represent covariances 
between errors further spaced in time. This type of structure is exactly that 
specified by the lagged autoregressive structure, which is why it is not surprising 
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that the AR(1) model yields values of AIC and SBC that appear superior. With 
only two parameters, this approach estimates E to be: 

1324 1092 901 743 
1092 1324 1092 901 

901 1092 1324 1092 

743 901 1092 1324 

which is quite similar to the unstructured estimate, but this requires only two 
parameters, U2 and p. Based on these analyses, we would conclude that the 
AR(1) structure provides a better fit to the data. Were this an actual analysis, 
however, we would also consider alternative structures before stopping at this 
conclusion. 

Having established the method for specifying the structure of the within- 
person error covariance matrix, we may now consider what happens when we 
combine this specification with the intercepts and slopes as outcomes specifica- 
tion considered earlier. We allow the intercepts and slopes to vary across people 
by writing: 

proc mixed noclprint covtest noitprint; 
class id wave; 
model y = time ccovar time*ccovar/s ddfm=bw notest; 
random intercept time /type=un sub=id g; 
repeated wave/type=ar(1) subject=id r; 

which yields the following output: 
R Matrix for ID 1 

Row COL1 COL2 COL3 COL4 

1 141.36668313 -19.36313770 2.65218857 -0.36327295 
2 -19.36313770 141.36668313 -19.36313770 2.65218857 
3 2.65218857 -19.36313770 141.36668313 -19.36313770 
4 -0.36327295 2.65218857 -19.36313770 141.36668313 

G Matrix 

Parameter Subject Row COL1 COL2 

INTERCEPT ID 1 1 1258.0957499 -182.4126739 
TIME ID 1 2 -182.4126739 110.94230682 

Covariance Parameter Estimates (REML) 

Cov Parm Ratio Estimate Std Error Z Pr > IZI 

INTERCEPT UN(1,1) 8.89952089 1258.0957499 333.24588494 3.78 0.0002 
UN(2,1) -1.29035123 -182.4126739 84.55201948 -2.16 0.0310 
UN(2,2) 0.78478397 110.94230682 34.52985960 3.21 0.0013 

WAVE AR(1) -0.00096891 -0.13697101 0.25888610 -0.53 0.5968 
Residual 1.00000000 141.36668313 36.34493926 3.89 0.0001 
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Model Fitting Information for Y 

Description Value 

Observations 140.0000 
REML Log Likelihood -630.022 
Akaike's Information Criterion -635.022 
Schwarz's Bayesian Criterion -642.304 
-2 REML Log Likelihood 1260.045 
Null Model LRT Chi-Square 120.9650 
Null Model LRT DF 4.0000 
Null Model LRT P-Value 0.0000 

Solution for Fixed Effects 

Parameter Estimate Std Error DDF T Pr > ITI 

INTERCEPT 164.42273345 6.19898567 33 26.52 0.0001 
TIME 26.90816754 1.97745500 103 13.61 0.0001 
CCOVAR -0.12338407 0.50343450 33 -0.25 0.8079 
TIME*CCOVAR 0.43573062 0.16059386 103 2.71 0.0078 

When interpreting this output, it is useful to compare it to the simpler models, 
which included random effects for the intercepts and slopes, but which imposed 
no additional structure on the error covariance matrix (beyond the heteroscedas- 
tic structure of the intercepts and slopes as outcomes model). When we make 
these comparisons, all signs point towards the conclusion that we do not need to 
add the extra complexity of the autoregressive error structure, once the covariate 
has been taken into account. I emphasize this last phrase because the error 
covariance structure within persons describes the behavior of the errors-in 
other words, what remains after removing the other fixed and random effects in 
the model. In this instance, and in many others, the autoregressive structure is no 
longer needed after other fixed and random effects are taken into account. 

What evidence am I using to reach this conclusion? First, consider the 
covariance estimate for the autoregressive parameter. We are unable to reject the 
null hypothesis that this estimate, -0.13, could have been obtained from a 
population in which the true value of the parameter were 0. In other words, there 
is little supporting evidence to increase the complexity of I by adding off- 
diagonal elements. Second, when comparing the two models that include the 
covariate and its interaction with time, differing only in the inclusion of the 
autoregressive parameter, the -2RLL statistic improves only trivially, from 
-630.14 without this assumption to -630.02 with this assumption. This im- 
provement is so small that the AIC and SBC, which both penalize for the 
additional parameter, actually get worse. Therefore, despite the fact that there 
appears to be an autoregressive error structure when the covariate is not included 
and the slopes are not treated as random, the need for this additional structure 
disappears when these features are added to the model. 

As this example shows, a range of models can be fit to the same data. 
Experienced data analysts know that selecting among competing models can be 
tricky, especially when the number of observations per person is relatively small. 
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Were we conducting this analysis to reach substantive conclusions about the 
relationship between the outcome and predictors, we would fit several additional 
models to these data, including one with an AR(1) error covariance matrix and 
random intercepts. Readers interested in learning more about specifying the 
error covariance matrix and comparing results across models should consult Van 
Leeuwen (1997), Goldstein, Healy, and Rasbash (1994), and Wolfinger (1993, 
1996). 

Conclusion 

Statistical software does not a statistician make. That said, without software, 
few statisticians and even fewer empirical researchers would fit the kinds of 
sophisticated statistical models being promulgated today. The availability of 
flexible integrated software for fitting multilevel models holds the possibility 
that larger numbers of users will be able to fit reasonable statistical models to 
their data. Of course, as software becomes easier to use, we face the danger that 
statistical programming will substitute for clear statistical thinking and model 
development. Readers of the 1995 special issue of the Journal of Educational 
and Behavioral Statistics entitled Hierarchical Linear Models: Problems and 
Prospects (Kreft, 1995) were reminded that no piece of software will resolve the 
challenging statistical issues underlying decisions about model specification 
with complex data structures. Yet readers of this special issue were also re- 
minded that without software, few users would fit the models we would like to 
see applied in education and the behavioral sciences. 

The ideas presented in this paper can be easily extended to three-level (and 
higher-level models). In the case of "school-effects" analyses, the user must 
specify multiple RANDOM statements, with appropriate nesting specifications 
given in the SUB= option. For example, if you have data on students within 
teachers within schools, you could fit an unconditional means model with the 
syntax: 

proc mixed noclprint covtest; 
class teacher school; 
model mathach = /solution; 
random intercept/sub=school; 
random intercept/sub=teacher(school); 

Note that we do not have to include the option/TYPE=UN on either of the 
RANDOM statements because each specifies only one random effect (for the 
intercept). Were we to include additional random effects on either statement 
(that is, if we were to move beyond an unconditional means model) we would 
need to add this option to the appropriate line. 

In the case of longitudinal analyses that track individuals who are nested 
within groups, the specifications in the school-effects analysis portion of this 
paper can be combined with the specification in the individual growth models 
section. For exemple, if you have longitudinal data on students nested within 
teachers, you can fit a three-level individual growth model with the syntax: 
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proc mixed noclprint covtest; 
class student teacher; 
model mathach = time/solution ddfm=bw; 
random intercept time/type=un sub=teacher; 
random intercept time/type=un sub=student (teacher); 

Note that we have now specified the option /TYPE=UN on both random 
statements to ensure that estimation of the variance-covariance matrix is totally 
unconstrained. 

Many other options are available to the user interested in fitting more com- 
plex mixed models. Heterogeneity in the error variance-covariance matrix can 
be introduced using the GROUP option on the RANDOM statement. Sampling- 
based Bayesian analysis can be conducted using a PRIOR statement that permits 
a variety of distributional specifications for the variance components parameters' 
prior density. SAS also provides two macros--GLMMIX and NLINMIX-that 
can be used for fitting generalized linear mixed models and nonlinear mixed 
models that do not involve the normal continuous outcomes treated here. Further 
details concerning all these extensions are found in Littell et al. (1996) and SAS 
Institute (1996). 

PROC MIXED does not substitute for the excellent stand-alone multilevel 
software programs that are constantly being updated to fit an ever increasing 
array of models. Its integration into SAS, one of the most widely used integrated 
statistical packages, is what makes it an attractive option for many users. 
Because it was not designed with multilevel models in mind, the user seeking to 
use the program is likely best served by writing out the particular model to be fit 
and then identifying the appropriate syntax. Experience suggests that proceeding 
directly to PROC MIXED syntax is likely to produce output that is not what the 
user intended. But with these caveats in mind, I believe that PROC MIXED 
represents a valuable addition to the statistical toolkit for fitting multilevel 
models, hierarchical models, and individual growth models. 

Notes 
'The validity of these tests has been called into question both because they rely on 

large sample approximations (not useful with the small sample sizes often analyzed using 
multilevel models) and because variance components are known to have skewed (and 
bounded) sampling distributions that render normal approximations such as these ques- 
tionable. Although many other multilevel programs use the same approach to testing 
variance components (e.g., MLwiN and MIXREG), SAS has responded to this caution by 
actually dropping this section of output from the default PROC MIXED specification (in 
versions 6.12 and higher). That is why we needed to specify the option COVTEST on the 
PROC MIXED statement. An alternative approach is to compare models using familiar 
likelihood ratio chi-square tests that compare full and reduced models. Further details on 
this straightforward alternative are given in SAS Institute (1996) pages 598-599. 

2 There is another way of thinking about these variance components that you should be 
thinking about whenever you fit an unconditional model. The variance component for 
schools, here 8.6096, places an effective ceiling on the amount of variation in school 
means that will ever be explainable by a school level (level-2) factor. By including school 
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level factors (as we will do in the next section), we hope to reduce the size of this 
variance component, indicating that we have explained part of the explainable variation. 

"3 If you want to compare models with different fixed effects you must specify 
METHOD=ML and use the IC option. This is because SAS uses Restricted Maximum 
Likelihood (REML) (also known as residual maximum likelihood) as the default method 
of estimation. For further discussion of the differences between these methods of estima- 
tion, and the consequences of these differences, consult Longford (1993) or Diggle, Liang 
and Zeger (1994). 

4 For further information about the accuracy of these tests, see Littell et al., 1996, p. 4. 

Appendix: Creating SAS data sets for use in PROC MIXED 

SAS data sets containing multilevel data can be organized in one of two ways: 
(a) multiple record data sets, in which each level-2 unit has multiple records, 
one per level-i unit; and (b) multiple variable data sets, in which each level-2 
unit has one record and multiple variables are used to record either the multiple 
occasions of measurement or the multiple members of a group (the level-i data). 
In a multiple record file, the data set for 35 people with 4 occasions of 
measurement would have 140 records, one per person, per occasion. In a 
multiple variable file, the same data set would have only 35 records; 4 variables 
would be used to denote the individual's score on each measurement occasion. 

To use PROC MIXED, you need a multiple record data set. It must contain all 
the variables you want to analyze (regardless of the level at which they are 
measured) at the lowest level possible. In this appendix, I describe how you can 
create this data set from a variety of existing data arrangements. The example 
uses the data for indivdual growth modeling analyzed in the text (Willett, 1988). 
By selecting from the code presented, you should be able to create whatever 
variables needed for multilevel analysis. 

Reading in Multiple Record Files 

Most data you will encounter will arrive as a multiple record file. You will 
have data on multiple teachers within a school, multiple students in a class, 
multiple children within a family, or multiple observations on individuals over 
time. Each observation must have an ID that identifies the group (or other 
level-2 unit) to whom each level-i record belongs. An example of the level-i 
data file for the growth modeling example is shown below. There are four 
variables: the ID in cols 1-2, the TIME of measurement in col 3, the SCORE in 
cols 4-6, and the COVAR in cols 7-9. 
010205 37 
011217 37 
012268 37 
013302 37 
020219 23 
021243 23 
022279 23 
023302 23 

350166 10 
351197 10 
352203 10 
353233 10 
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The code below provides two ways of reading this multiple record file. Data step 
one reads it in as a multiple record file; data step two reads it in as a multiple 
variable file. Although it is most common to read the data in as a multiple record 
file, it is sometimes convenient to have the data organized as multiple variable 
file (especially when thinking about creating aggregate variables or computing 
means for centering). If you decide that this is the case for you, the second data 

step could be used as well, providing you with a level-2 data file. PROC 
SUMMARY can also be used in this regard. 

Converting From Multiple Record Files to Multiple Variable Files 
(and vice versa) 

Once you have created either type of SAS data set, it is relatively easy to 
convert from one data structure to the other. Data step three converts a multiple 
record SAS data set (data=one) into a multiple variable data set. The resultant 
data set is identical to the data set created in data step two. Note that I have 
changed the names of the array variables from T and SCORE to TVAR and 
SCOREVAR because the arrays T and SCORE had already been defined in a 
previous data step. 

Data step four converts a multiple variable data set into a multiple record data 
set. This data step completes the cycle, enabling you to go from one form to 
another with ease. The resultant data set (data=four) is identical to data set one. 
The important idea for PROC MIXED users is that you can easily go from one 
data form to the other through the careful use of data steps. 

Code for manipulating multilevel data sets 

*Reading in as a multiple record file*; 

data one; 
infile test; 
input id 1-2 t 3 score 4-6 covar 7-9; 

"*Reading in as multiple variable file. *; 

data two: 
infile test eof=stop; 
array t[4] tl-t4; 
array score [4] scorel-score4; 
do i=l to 4 while (id=nextid); 

input id 1-2 t[i] 3 score [i] 4-6 covar 7-9; 
input nextid 1-2 @@; 

end; 
drop nextid i; 
stop: output; 
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"*Converting a multiple record SAS data set into a multiple variable SAS 
data set. *; 

data three; 
array tvar[4] tl-t4; 
array scorevar [4] scorel-score4; 
do i=1 to 4 until (last.id); 

set one; 
by id; 
tvar [i]=t; 
scorevar [i]=score; 

end; 
drop i t score; 

"*Converting a multiple variable data set into a multiple record data set. *; 
data four; 

set three; 
array tvar [4] tl-t4; 
array scorevar [4] scorel-score4; 
do i=1 to 4; 

t = tvar[i]; 
score = scorevar [i]; 
output; 

end; 
drop i tl-t4 scorel-score4; 
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